每日一题-一道很简单的数列极限

49 篇文章 1 订阅
32 篇文章 2 订阅

背景

和同寝室的哲明宝宝通宵达旦的讨论,分享我们彼此对数学以及算法学的热爱,我们灵机一动想到了这样一个问题。是的,尽管前人一定已经对这一问题给出了证明,但是,我们的灵感对我来说实在是太宝贵了,我不希望我们彻夜不眠的成果被别人抢去。不过说实话这道题还是挺简单的。

题面

已知:

E ( x ) = lim ⁡ n → ∞ ( x + ∑ k = 1 n ( k + 1 ) x ( x − 1 ) k ) E(x)=\lim_{n\to \infty}\left(x+\sum_{k=1}^n(k+1)x(x-1)^k\right) E(x)=nlim(x+k=1n(k+1)x(x1)k)

E ( e − 1 ) E(e^{-1}) E(e1),其中 e ≈ 2.718281828 ⋯ e\approx 2.718281828\cdots e2.718281828

解法一

看到和式中的系数恰好是指数加一,联想到通过积分解决问题。

∫ ( k + 1 ) p ( 1 − p ) k d p = ? \int (k+1)p(1-p)^{k}\text{d}p=? (k+1)p(1p)kdp=?

可以采用换元,令 q = 1 − p q=1-p q=1p,原始即为:

∫ ( k + 1 ) ( 1 − q ) q k d ( 1 − q ) = − q k + 1 + k + 1 k + 2 ⋅ q k + 1 + C \int(k+1)(1-q)q^k\text{d}(1-q)=-q^{k+1}+\frac{k+1}{k+2}\cdot q^{k+1}+C (k+1)(1q)qkd(1q)=qk+1+k+2k+1qk+1+C

这个时候,就可以得到:

∫ E ( p ) d p = 1 2 p 2 + ∑ k = 1 ∞ ( − ( 1 − p ) k + 1 + k + 1 k + 2 ⋅ ( 1 − p ) k + 2 ) \int E(p)\text d p=\frac{1}{2}p^2+\sum_{k=1}^{\infty}\left(-(1-p)^{k+1}+\frac{k+1}{k+2}\cdot (1-p)^{k+2}\right) E(p)dp=21p2+k=1((1p)k+1+k+2k+1(1p)k+2)

k = 1 k=1 k=1 时的 − ( 1 − p ) k + 1 -(1-p)^{k+1} (1p)k+1 从和式中提出。

E ( p ) = 1 2 p 2 − ( 1 − p ) 2 − ∑ k = 3 ∞ ( 1 − p ) k k E(p)=\frac{1}{2}p^2-(1-p)^2-\sum_{k=3}^{\infty}\frac{(1-p)^k}{k} E(p)=21p2(1p)2k=3k(1p)k

然后我们看到了惊人的一幕,我们看到了 q k k \frac{q^k}{k} kqk,这难道不正是 ln ⁡ ( 1 + x ) \ln(1+x) ln(1+x)在 0 处的麦克劳林展开式去掉前两项吗?

ln ⁡ ( 1 + x ) = x − 1 2 x 2 + 1 3 x 3 − 1 4 x 4 + ⋯ \ln(1+x)=x-\frac{1}{2}x^2+\frac{1}{3}x^3-\frac{1}{4}x^4+\cdots ln(1+x)=x21x2+31x341x4+

因此,带入 x = − x x=-x x=x

ln ⁡ ( 1 − x ) = − x − 1 2 x 2 − 1 3 x 3 − 1 4 x 4 − ⋯ \ln(1-x)=-x-\frac{1}{2}x^2-\frac{1}{3}x^3-\frac{1}{4}x^4-\cdots ln(1x)=x21x231x341x4

因此,带入 x = ( 1 − p ) x=(1-p) x=(1p)

ln ⁡ ( 1 − ( 1 − p ) ) = ln ⁡ ( p ) = − ( 1 − p ) − 1 2 ( 1 − p ) 2 − ∑ k = 3 ∞ 1 k ( 1 − p ) k \ln(1-(1-p))=\ln(p)=-(1-p)-\frac{1}{2}(1-p)^2-\sum_{k=3}^{\infty}\frac{1}{k}(1-p)^k ln(1(1p))=ln(p)=(1p)21(1p)2k=3k1(1p)k

解得:

∑ k = 3 ∞ 1 k ( 1 − p ) k = ln ⁡ ( p ) + ( 1 − p ) + 1 2 ( 1 − p ) 2 \sum_{k=3}^{\infty}\frac{1}{k}(1-p)^k=\ln(p)+(1-p)+\frac{1}{2}(1-p)^2 k=3k1(1p)k=ln(p)+(1p)+21(1p)2

因此:

∫ E ( p ) d p = 1 2 p 2 − ( 1 − p ) 2 + ln ⁡ ( p ) + ( 1 − p ) + 1 2 ( 1 − p ) 2 + C 1 = ln ⁡ p + C , C = C 1 + 1 2 \int E(p)\text{d}p=\frac{1}{2}p^2-(1-p)^2+\ln(p)+(1-p)+\frac{1}{2}(1-p)^2+C_1=\ln p+C,C=C_1+\frac{1}{2} E(p)dp=21p2(1p)2+ln(p)+(1p)+21(1p)2+C1=lnp+C,C=C1+21

对等式右侧求导可得:

E ( p ) = 1 p E(p)=\frac{1}{p} E(p)=p1

因此: E ( e − 1 ) = e E(e^{-1})=e E(e1)=e

解法二

不难发现 E ( x ) E(x) E(x) 实际上就是在“单次重复实验成功概率为 x x x”的情况下,进行若干次独立重复实验时首次成功实验时的实验次数的数学期望,服从几何分布。

在证明 E ( x ) E(x) E(x)极限存在的条件下,可以得到概率方程:

E ( x ) = 1 × x + ( 1 + E ( x ) ) × ( 1 − x ) E(x)=1\times x + (1+E(x))\times (1-x) E(x)=1×x+(1+E(x))×(1x)

这个方程的含义是:

如果第一次实验成功,那么实验总次数为 1 1 1,这种情况出现的概率是 x x x。如果第一次实验失败,那么接下的所有实验之前就多了一次失败的实验,而除去这次失败的实验,实验的总次数的期望仍为 E ( x ) E(x) E(x),这种情况出现的概率是 1 − x 1-x 1x

解得: E ( x ) = 1 x E(x)=\frac{1}{x} E(x)=x1

因此: E ( e − 1 ) = e E(e^{-1})=e E(e1)=e

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值