假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
注意:给定 n 是一个正整数。
示例
输入: 3
输出: 3
解释: 有三种方法可以爬到楼顶。
- 1 阶 + 1 阶 + 1 阶
- 1 阶 + 2 阶
- 2 阶 + 1 阶
解法一: 递归
int climbStairs(int n)
{
if(n == 1)
return 1;
if(n == 2)
return 2;
return climbStairs(n-1)+climbStairs(n-2);
}
时间复杂度O(2^n)
很容易就超时溢出
优化:
定义数组将已经计算的过值存起来
进入函数时先判断数组下标n对应的是否有值,有,则返回,没有则计算,再存入数组中,返回。
最后计算出时间复杂度为O(n);
代码如下:
class Solution {
public:
int climbStairs(int n) {
int memo[1000] = {0};
int res = climbStairsMemo(n,memo);
return res;
}
int climbStairsMemo(int n,int memo[1000])
{
if(memo[n]>0)
{
return memo[n];
}
if(n == 1)
memo[n] = 1;
else if(n == 2)
memo[n] = 2;
else
memo[n] = climbStairsMemo(n-1,memo)+climbStairsMemo(n-2,memo);
return memo[n];
}
};
解法二 : 动态规划
该题依赖于前一次和前前一次的数值,所以我们可以定义数组,将他们记录下来
并使用
代码如下:
class Solution {
public:
int climbStairs(int n) {
if(n == 1 || n == 2)
return n;
int dp[n];
dp[1] = 1;
dp[2] = 2;
for(int i = 3;i<=n;i++)
dp[i] = dp[i-1]+dp[i-2];
return dp[n];
}
};
时间复杂度空间复杂度都是O(n);
力扣网友:咖喱土豆的JAVA解法
Java的话因为返回值为int,n=46时,结果会溢出,因此n < 46,那么就有
public int climbStairs(int n) {
int result = 0;
switch(n){
case 1: result = 1; break;
case 2: result = 2; break;
case 3: result = 3; break;
case 4: result = 5; break;
case 5: result = 8; break;
case 6: result = 13; break;
case 7: result = 21; break;
case 8: result = 34; break;
case 9: result = 55; break;
case 10: result = 89; break;
case 11: result = 144; break;
case 12: result = 233; break;
case 13: result = 377; break;
case 14: result = 610; break;
case 15: result = 987; break;
case 16: result = 1597; break;
case 17: result = 2584; break;
case 18: result = 4181; break;
case 19: result = 6765; break;
case 20: result = 10946; break;
case 21: result = 17711; break;
case 22: result = 28657; break;
case 23: result = 46368; break;
case 24: result = 75025; break;
case 25: result = 121393; break;
case 26: result = 196418; break;
case 27: result = 317811; break;
case 28: result = 514229; break;
case 29: result = 832040; break;
case 30: result = 1346269; break;
case 31: result = 2178309; break;
case 32: result = 3524578; break;
case 33: result = 5702887; break;
case 34: result = 9227465; break;
case 35: result = 14930352; break;
case 36: result = 24157817; break;
case 37: result = 39088169; break;
case 38: result = 63245986; break;
case 39: result = 102334155; break;
case 40: result = 165580141; break;
case 41: result = 267914296; break;
case 42: result = 433494437; break;
case 43: result = 701408733; break;
case 44: result = 1134903170; break;
case 45: result = 1836311903; break;
}
return result;
}
长度较短的有限集合的解,可直接返回值,自己学习算法最终的目的还是为了更好地解决问题。
警醒自己不要沉迷于算法的精妙而忽视实际情况,上了很好的一课。
(也给我上了一课)