蓝桥杯:三部排序
题目描述:
一般的排序有许多经典算法,如快速排序、希尔排序等。
但实际应用时,经常会或多或少有一些特殊的要求。我们没必要套用那些经典算法,可以根据实际情况建立更好的解法。
比如,对一个整型数组中的数字进行分类排序:
使得负数都靠左端,正数都靠右端,0在中部。注意问题的特点是:负数区域和正数区域内并不要求有序。可以利用这个特点通过1次线性扫描就结束战斗!!
以下的程序实现了该目标。
其中x指向待排序的整型数组,len是数组的长度。
void sort3p(int* x, int len)
{
int p = 0;
int left = 0;
int right = len-1;
while(p<=right){
if(x[p]<0){
int t = x[left];
x[left] = x[p];
x[p] = t;
left++;
p++;
}
else if(x[p]>0){
int t = x[right];
x[right] = x[p];
x[p] = t;
right–;
}
else{
__________________________; //填空位置
}
}
}
如果给定数组:
25,18,-2,0,16,-5,33,21,0,19,-16,25,-3,0
则排序后为:
-3,-2,-16,-5,0,0,0,21,19,33,25,16,18,25
请分析代码逻辑,并推测划线处的代码,通过网页提交
注意:仅把缺少的代码作为答案,千万不要填写多余的代码、符号或说明文字!!
答案: p++
代码:
#include<iostream>
using namespace std;
void sort3p(int* x, int len)
{
int p = 0;
int left = 0;
int right = len-1;
while(p<=right)
{
if(x[p]<0)
{
int t = x[left];
x[left] = x[p];
x[p] = t;
left++;
p++;
}
else if(x[p]>0)
{
int t = x[right];
x[right] = x[p];
x[p] = t;
right--;
}
else
{
p++;
//填空位置
}
}
}
int main()
{
int x[14]= {25,18,-2,0,16,-5,33,21,0,19,-16,25,-3,0};
sort3p(x,14);
for(int i=0; i<14; i++)
cout<<x[i]<<" ";
return 0;
}