【模板+例题】Lucas定理

p p p 为质数,则对于任意整数 1 ≤ m ≤ n 1\le m \le n 1mn,有:

C n m ≡ C n ÷ p m ÷ p × C n m o d    p m m o d    p ( m o d   p ) C_n^m \equiv C_{n \div p}^{m \div p} \times C_{n\mod p}^{m\mod p} (mod~p) CnmCn÷pm÷p×Cnmodpmmodp(mod p)

也就是把 n n n m m m 表示成 p p p 进制数,并且对 p p p 进制数下的每一位分别计算组合数,累乘起来。


CODE

inline int power(int x,int y,int p){
    int res=1;
    while(y){
        if(y&1) res=res*x%p; 
        x=x*x%p; 
        y>>=1;
    }
    return res%p;
}
inline int C(int x,int y,int p){
	if(y>x) return 0;
	return jc[x]*power(jc[y]*jc[x-y]%p,p-2,p)%p;//乘上逆元
}
inline int Lucas(int x,int y,int p){
    if(!y) return 1;
    return C(x%p,y%p,p)*Lucas(x/p,y/p,p)%p;
}

例题

image


可先与处理出阶乘数组(在 p p p 范围内),再每组用 Lucas 定理计算组合数。


CODE

#include<bits/stdc++.h>
#define int long long
using namespace std;
int p=10007;
const int N=1e5+10;
int T,n,m,jc[N];
inline int power(int x,int y,int p){
    int res=1;
    while(y){
        if(y&1) res=res*x%p; 
        x=x*x%p; 
        y>>=1;
    }
    return res%p;
}
inline int C(int x,int y,int p){
	if(y>x) return 0;
	return jc[x]*power(jc[y]*jc[x-y]%p,p-2,p)%p;
}
inline int Lucas(int x,int y,int p){
//	int ans=1;
//	while(x&&y){
//		ans*=C(x%mod,y%mod,mod)%mod;	
//		x/=mod;y/=mod;
//	}return ans;
    if(!y) return 1;
    return C(x%p,y%p,p)*Lucas(x/p,y/p,p)%p;
}
signed main(void){
	scanf("%lld",&T);
	jc[0]=1;
	for(int i=1;i<=p;++i) jc[i]=(i*jc[i-1])%p;
	while(T--){
		scanf("%lld%lld",&n,&m);
		printf("%lld\n",Lucas(n,m,p));
	}
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值