flink
谈谈我的学习流计算的流事件
1:在脉脉上看到一条消息大致意思说,kafka是流计算中的你大爷还是你大爷
2:然后拿回到了消息队列这个事件上,之前看过gopherc china 中说到了 nsq,然后就什么新什么没听过什么来
就拿mac brew 了一个nsq 然后测了几天,感觉速度没测起来,但是他的那个翻页增信息的na'g额页面挺好看,有点类似某宝的大屏交易量(hhh 善于联想)
3那再往基础回一下就到rabbitmq,技术棧是erlang (没摸过),还是 mac brew 了一下,跑了下还挺爽,就几万吧,看到了消息的一 推一拉,然后没了,嗯,吃消息的速度挺快的
4那看了下消息队列选型对比,那自然就来 海边的kfk了,最早看他是在之前看hadoop的时候,不过就只是看了盗印的pdf,印象也不深,就记得自己当时什么 vbox新建三台虚拟机,然后就ssh互相信任,然后测试了下hdfs ,再跑了个自带的wordcount 然后就再没碰过
5.kfk征程,话不多说,就先跑个推 (做饭)拉(吃饭),哇 惊艳 稳定在15到20w的生产消息上,吃了一碗上消息,然后起来,消费变得特别慢,然后就 增加分区,和他的那几个常见参数 问题解决
6 kfk 流计算 怎一个爽字了得
然后就看他的java stream api(我去就个maven依赖就搞定了 (好惨折腾了真实三天,)),这么快的wordcount(后来知道这是基石也是最经典的了,可以衍生很多,到pv/uv统计,反欺诈,出实时报表),其实就是改变算子(什么分组啊,排序啊,聚合呀)
有个小的建议就是,命令行的可以新建topic,那api自然可以建,围绕这个思路,就可以不被百度前几页的demo所骗了
7应用前景
实时计算,物联网,风控,大屏实时报表,(思路衍生图,数据流,想到水流,水流想到了水库,水库想到了净化等操作(实时计算的算子), so噶,道法自然,物理相通,)学完给排水,再学流计算的人应该一目了然,(难怪乔帮主练习书法对苹果产品设计有影响)
这些操作就单mac,(想到不能坐井观天,但是也不能妄自菲薄)
8 嘿嘿kfk 下来自然而然就到了 flink ,太通顺了,顺理成章的通顺
没细细研究,但是看到他的很多的api很好,什么sql啊,表啊,pyflink刚出来,以前跑过,pyspark,就看视频看了看,B站的社区组织的那种视频,高质量,比那些自称培训老师讲的好多了
9思路比四维脑图还丰富,什么landam架构 (别被词唬住了,就是 离线结果 整合 实时结果 再发布一层服务)
就是 离线 + 实时 +整合结果的服务=landam 架构
妥了,这些东西整理出来了,就不在脑子里面了,这样就会轻松一些
补充流计算+M(机器)L(学习),别想歪了,好害怕,当计算机从 UI / 工具 的功效(疗效),回到计算和通信的本质上,真有些后怕,除了在商业价值上外,我还是希望多多的提升他的文化和教育价值,就像(呼兰(吐槽大会)说的,我们缺觉,不缺焦虑),不要让大数据,实时计算 算出了大焦虑 跪谢