基于MATLAB的战术手势识别功能的设计与实现

基于MATLAB的战术手势识别功能的设计与实现

1  选题背景与研究意义

武警部队作为国家重要武装力量,履行着国家赋予的神圣使命,在执行解救人质、捕歼暴恐分子等任务时,确保良好的通信联络是分队行动中通信保障的重点。低劣的通信质量在实战中将导致分队无法及时得到上级行动命令、失去对战场情况的把控,指挥部无法及时了解作战情况,造成整个行动指挥的失控,最终导致丢失战场控制权,进而完全丧失战斗力。

随着现代技术的发展,各种无线、有线通信联络方式飞速发展,有效保障了分队行动中的良好通信联络。但是,战场环境的多变导致依靠无线电波等技术的通信联络具有较高的不确定性,其受地形、天气等要素的影响较多,同时也易遭到敌方势力的电子对抗打击从而降低甚至破坏我方通信联络效能。故此,作为分队行动中的战术手势通信不可或缺。

战术手势识别主要是以战术手势几何特征检验为前提,是通过探究对应的手势图像几何形状轮廓,结合相关特性来判断战术手势所蕴含的意义。就好比人在对另外一个战术手势进行识别的时候,往往需要访问自己大脑里面的记忆库,对相应的特征进行比对之后,如果与相关记忆库识别比对成功,就能够识别出战术手势的含义,如果该对象的特征无法被匹配,那么说明无法识别。

在民用领域中,识别人手部动作并给予相应反馈的手势识别研究,应用前景及潜藏的经济价值不可估量。如果能将该技术运用在军事方面,可以有效的提升部队现代化水平,提高部队对于信息的反应和处理能力,进而进一步提升单兵作战能力,减少物资和人员的消耗,全面提升战斗力。对于武警部队而言,分队战术手势识别技术可以广泛的被应用在反恐作战、防卫作战、处突维稳、日常执勤、看押看守等各个方面,分队战术手势识别的研究处于模式识别、图像处理、机器学习和计算机语言等多学科领域交叉地带,综合性很强。战术手势研究典型的应用领域有:智能控制、运动分析、虚拟现实等。通过战术手势识别技术的发展,可以实现人机通过手势变换进行交互,通过手势直接无线控制PC等电子产品;在文体活动中,手势识别也大放异彩,通过运动分析及手势分析可以极大地提高运动与舞蹈训练水平;手势分析同样可以帮助视频会议达到更好的效果,降低人物动画制作成本,或者帮助世界上不同区域的人利用互联网组成一个线上工作团队。

围绕武警部队在各类战斗、任务中的战术手势的重要性,每一名战斗在一线官兵都应该对战斗中所使用的战术手语非常熟悉,以真正达到传递信息、通信联络的作用。而常用的、熟悉的战术手语已经不具备较好的保密性和安全性,所以每一场战斗或者任务都应该将新编战术手语作为一项重要的准备工作来完成。那么设计规定好战术手语后,提高官兵的记忆效率,确保战斗或者执行任务过程中战术手语的有效正确运用便至关重要。选题即围绕战术手势的识别功能,以MATLAB为基础展开研究和设计。为便于官兵在训练中加强对手语的记忆掌握,根据不同的战术背景不同的手语需要,针对特战小队在实际任务中可以运用到的手语联络方式进行设计研究,通过自拟暗语进行训练测试,完成了基于MATLAB的战术手语的识别功能的设计与实现。

2  国内外研究现状

手势识别的研究起步于20世纪末,由于计算机技术的发展,特别是近年来虚拟现实技术的发展,手势识别的研究也到达一个新的高度。熵分析法是韩国的李金石、李振恩等人通过从背景复杂的视频数据中分割出人的手势形状,然后计算手型的质心到轮廓边界的距离从而识别手势的方法,该方法具有较好的识别率,在对6个实验样本的测试中,结果显示其正确识别率近乎百分百。印度人米娜克氏在基于视觉手势识别的基础上进一步研究,提出一种基于结构特征的手势识别算法。该算法包括去除背景、方向检测。手指检测以及手指的数量进行检测,最终确定手势。于成龙等采用基于视觉的组合特征进行手势识别,通过手掌的大小长度、质心、长宽比等人手的属性值结合使用,使得识别率得到极大提升。

对于手势识别的研究不仅仅限于大学或者是研究院等机构,众多的大型公司机构也纷纷加入到手势识别研究以及应用的行列。在多伦多2014年举行的“计算机人机互动大会”上,微软向世界展示了一款运动传感键盘,该键盘实现了对用户悬空手势进行的识别。该款键盘被命名为Type-Hover-Swipe键盘,它集成了64个传感器,每个传感器位于键盘的格子中间。当用户将手指悬停在键盘上方时,键盘会根据用户手指的运动进行识别,这样就可以实现用户以一种舒服的姿势进行手势操作。而Xbox则是微软比较成熟的商业化手势甚至是身体的识别。作为芯片生产巨头,Intel公司也积极参与到手势识别的大军中来。其中开源的图像处理OpenCV类库以及Realsense设备都是他们在此领域的研究成果。

国内高校及研究院对于手势识别也有着许多成就,哈尔滨工业大学的吴江琴、高文等人通过ANN与HMM的混合方法的手语训练识别方法,增加了识别方法的分类特征,同时使得模型的估计参数大幅减少,提高了效率。在实际运用中,使用ANN-HMM混合方法的中国手语识别系统中,孤立词语的识别率为90%,简单语句的识别率为92%。另外,天津大学的研究人员通过对操作者的体态动作图像信息进行

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值