针对tfrecords数据集,标签和图片读取不一致问题。

训练深度网络时遇到loss恒定问题,发现是TFRecords数据集中图片和标签不一致导致。检查数据集制作过程,确保图片和标签一一对应。修正读取代码以同步加载图片和标签,解决了问题。
摘要由CSDN通过智能技术生成

前一段时间,训练2分类深度网络时,loss一直维持在2.3左右。在网上看了很多博客,最后从这篇博客中找到了,解决的方法。具体的不详细说了,可以参考那篇博客。我按照上面的提到问题,仔细检测自己的网络,发现可能是我的数据集中的图片和标签不一致所造成。

我的数据集是tfrecords格式的二进制文件(前提:确保制作数据集的图片不存在问题,不然读取时会报错。),我制作代码如下:

import glob
import tensorflow as tf
from PIL import Image
import numpy as np
import random

num=0
bestnum=5000   
recordfilenum=0
filenames=[]
for filename in glob.glob('./data/PetImages/Cat/*.jpg')[2500:3000]:
    tmp=[]
    tmp.append(filename)
    tmp.append(0)
    filenames.append(tmp)
for filename in glob.glob('./data/PetImages/Dog/*.jpg')[2500:3000]:
    tmp=[]
    tmp.append(filename)
    tmp.append(1)
    filenames.append
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值