//手写红黑树
package com.nko.tree;
/**
* 1.创建RBTree,定义颜色
* 2.创建RBNode
* 3.辅助方法定义:parentOf(node),isRed(node),setRed(node),setBlack(node),inOrderPrint()
* 4.左旋方法定义:leftRotate(node)
* 5.右旋方法定义:rightRotate(node)
* 6.公开插入接口方法定义:insert(K key, V value)
* 7.内部插入接口方法定义:insert(RBNode node)
* 8.修正插入导致红黑树失衡的方法定义:insertFixUp(RBNode node)
* 9.测试红黑树正确性
*/
public class RBTree<K extends Comparable<K>, V> {
//定义颜色
private static boolean RED = true;
private static boolean BLACK = false;
private RBNode root;
public RBNode getRoot() {
return root;
}
static class RBNode<K extends Comparable<K>, V> {
private RBNode parent;
private RBNode left;
private RBNode right;
private boolean color;
private K key;
private V value;
//树根的引用
public RBNode(RBNode parent, RBNode left, RBNode right, boolean color, K key, V value) {
this.parent = parent;
this.left = left;
this.right = right;
this.color = color;
this.key = key;
this.value = value;
}
public RBNode() {
}
public RBNode getParent() {
return parent;
}
public void setParent(RBNode parent) {
this.parent = parent;
}
public RBNode getLeft() {
return left;
}
public void setLeft(RBNode left) {
this.left = left;
}
public RBNode getRight() {
return right;
}
public void setRight(RBNode right) {
this.right = right;
}
public boolean isColor() {
return color;
}
public void setColor(boolean color) {
this.color = color;
}
public K getKey() {
return key;
}
public void setKey(K key) {
this.key = key;
}
public V getValue() {
return value;
}
public void setValue(V value) {
this.value = value;
}
}
/**
* 获取当前节点的父节点
*
* @param node
* @return
*/
private RBNode parentOf(RBNode node) {
if (node != null) {
return node.parent;
}
return null;
}
/**
* 节点是否为红色
*
* @param node
* @return
*/
private boolean isRed(RBNode node) {
if (node != null) {
return node.color == RED;
}
return false;
}
/**
* 节点是否为黑色
*
* @param node
* @return
*/
private boolean isBlack(RBNode node) {
if (node != null) {
return node.color == BLACK;
}
return false;
}
/**
* 设置节点为红色
*
* @param node
*/
private void setRed(RBNode node) {
if (node != null) {
node.color = RED;
}
}
/**
* 设置节点为黑色
*
* @param node
*/
private void setBlack(RBNode node) {
if (node != null) {
node.color = BLACK;
}
}
/**
* 中序打印二叉树
*/
public void inOrderPrint() {
inOrderPrint(this.root);
}
private void inOrderPrint(RBNode node) {
if (node != null) {
inOrderPrint(node.left);
System.out.println("key:" + node.key + ",value:" + node.value);
inOrderPrint(node.right);
}
}
/**
* 插入节点
*
* @param key
* @param value
*/
public void insert(K key, V value) {
RBNode node = new RBNode();
node.setKey(key);
node.setValue(value);
//新节点一定为红色
node.setColor(RED);
insert(node);
}
private void insert(RBNode node) {
//1.查找当前node的父节点
RBNode parent = null;
RBNode x = this.root;
while (x != null) {
parent = x;
//cmp > 0 说明node.key大于x.key 需要到x的右子树查找
//cmp == 0 说明node.key对于x.key 需要进行替换操作
//cmp < 0 说明node.key小于x.key 需要到x的左子树查找
int cmp = node.key.compareTo(x.key);
if (cmp > 0) {
x = x.right;
} else if (cmp == 0) {
x.setValue(node.getValue());
return;
} else {
x = x.left;
}
}
node.parent = parent;
if (parent != null) {
//判断node与parent的key谁大
int cmp = node.key.compareTo(parent.key);
if (cmp > 0) {
//当前node的key比parent的key大,需要把node放入parent的右子节点
parent.right = node;
} else {
//当前node的key比parent的key小,需要把node放入parent的左子节点
parent.left = node;
}
} else {
this.root = node;
}
//需要调用修复红黑树平衡的方法
insertFixUp(node);
}
/**
* 插入后修复红黑树平衡的方法
* 1.红黑树为空树,将根节点染色为黑色
* 2.插入节点的key已经存在,不需要处理
* 3.插入节点的父节点为黑色,因为你所插入的路径,黑色节点没有变化,所以红黑树依然平衡,所以不需要处理
* <p>
* 4.插入节点的父节点为红色
* 4.1:叔叔节点存在,并且为红色(父-叔 双红),将父亲和叔叔染色为黑色,将爷爷染色为红色,并且再以爷爷节点为当前节点,进行下一轮处理
* 4.2:叔叔节点不存在,或者为黑色,父节点为爷爷节点的左子树
* 4.2.1:插入节点为其父节点的左子节点(LL情况),将父亲节点染色为黑色,将爷爷节点染色为红色,然后以爷爷节点右旋,就完成了
* 4.2.2:插入节点为其父节点的右子节点(LR情况),以父亲节点进行一次左旋,得到LL双红的情景(4.2.1),然后指定父亲节点为当前节点进行下一轮处理
* 4.3:叔叔节点不存在。或者为黑色,父节点为爷爷节点的右子树
* 4.3.1:插入节点为其父节点的右子节点(RR情况),将父亲节点染色为黑色,将爷爷节点染色为红色,然后以爷爷节点左旋,就完成了
* 4.3.2:插入节点为其父节点的左子节点(RL情况),以父亲节点进行一次右旋,得到RR双红的情景(4.3.1),然后指定父亲节点为当前节点进行下一轮处理
*/
private void insertFixUp(RBNode node) {
//第一种情况
this.root.setColor(BLACK);
//第四种情况
RBNode parent = parentOf(node);
RBNode gparent = parentOf(parent);
if (parent != null && isRed(parent)) {
//如果父节点为红色,那么一定存在爷爷节点,因为根节点不可能是红色
RBNode uncle = null;
if (parent == gparent.left) {
uncle = gparent.right;
//情景4.1:叔叔节点存在且为红色(父-叔 双红)
if (uncle != null && isRed(uncle)) {
//将父亲和叔叔染色为黑色,将爷爷染色为红色,并且再以爷爷节点为当前节点进行下一轮处理
setBlack(parent);
setBlack(uncle);
setRed(gparent);
insertFixUp(gparent);
return;
}
//情景4.2:叔叔节点不存在,或者为黑色,父节点为爷爷节点的左子树
if (uncle == null || isBlack(uncle)) {
//情景4.2.1:插入节点为其父节点的左子节点(LL情况),将父亲节点染色为黑色,将爷爷节点染色为红色,然后以爷爷节点右旋,就完成了
if (node == parent.left) {
setBlack(parent);
setRed(gparent);
rightRotate(gparent);
return;
}
//情景4.2.2:插入节点为其父节点的右子节点(LR情况),以父亲节点进行一次左旋,得到LL双红的情景(4.2.1),然后指定父亲节点为当前节点进行下一轮处理
if (node == parent.right) {
leftRotate(parent);
insertFixUp(parent);
return;
}
}
} else {
uncle = gparent.left;
//父亲节点为爷爷节点的右子树
//情景4.1:叔叔节点存在且为红色(父-叔 双红)
if (uncle != null && isRed(uncle)) {
//将父亲和叔叔染色为黑色,将爷爷染色为红色,并且再以爷爷节点为当前节点进行下一轮处理
setBlack(parent);
setBlack(uncle);
setRed(gparent);
insertFixUp(gparent);
return;
}
//情景4.3:叔叔节点不存在。或者为黑色,父节点为爷爷节点的右子树
if (uncle == null || isBlack(uncle)) {
//情景4.3.1:插入节点为其父节点的右子节点(RR情况),将父亲节点染色为黑色,将爷爷节点染色为红色,然后以爷爷节点左旋,就完成了
if (node == parent.right) {
setBlack(parent);
setRed(gparent);
leftRotate(gparent);
return;
}
//情景4.3.2:插入节点为其父节点的左子节点(RL情况),以父亲节点进行一次右旋,得到RR双红的情景(4.3.1),然后指定父亲节点为当前节点进行下一轮处理
if (node == parent.left) {
rightRotate(parent);
insertFixUp(parent);
return;
}
}
}
}
}
/**
* 左旋示意图
* 左旋示意图:左旋X节点
* P p
* | |
* x y
* / \ --> / \
* lx y x ry
* / \ / \
* ly ry lx ly
* <p>
* 1.将y的左子节点的父节点更新为x,并将x的右子节点指向y的左子节点(ly)
* 2.当x的父节点(不为空时),更新y的父节点为x的父节点,并将x的父节点指定子树(当前x的子树位置)指定为y
* 3.将x的父节点更新为y,将y的左子节点更新为x
*/
private void leftRotate(RBNode x) {
//获取当前y节点
RBNode y = x.right;
//1.将x的右子节点指向y的左子节点(ly)
x.right = y.left;
//将y的左子节点的父节点更新为x
if (y.left != null) {
y.left.parent = x;
}
//2.当x的父节点(不为空时),更新y的父节点为x的父节点,并将x的父节点指定子树(当前x的子树位置)指定为y
if (x.parent != null) {
y.parent = x.parent;
if (x == x.parent.left) {
x.parent.left = y;
} else {
x.parent.right = y;
}
} else {
//说明x为根节点,此时需要更新y为根节点引用
this.root = y;
this.root.parent = null;
}
//3.将x的父节点更新为y,将y的左子节点更新为x
x.parent = y;
y.left = x;
}
/**
* 右旋方法
* 右旋示意图:右旋y节点
* <p>
* P P
* | |
* y x
* / \ --> / \
* x ry lx y
* / \ / \
* lx ly ly ry
* <p>
* 1.将y的左子节点指向x的右子节点,并更新x的右子节点的父节点为y
* 2.当y的父节点不为空时,更新x的父节点为y的父节点,更新y的父节点指定子节点(y当前的位置)为x
* 3.更新y的父节点为x,更新x的右子节点为y
*/
private void rightRotate(RBNode y) {
//获取当前x的位置
RBNode x = y.left;
//1.将y的左子节点指向x的右子节点,并更新x的右子节点的父节点为y
y.left = x.right;
if (x.right != null) {
x.right.parent = y;
}
//2.当y的父节点不为空时,更新x的父节点为y的父节点,更新y的父节点指定子节点(y当前的位置)为x
if (y.parent != null) {
x.parent = y.parent;
if (y == y.parent.left) {
y.parent.left = x;
} else {
y.parent.right = x;
}
} else {
this.root = x;
this.root.parent = null;
}
//3.更新y的父节点为x,更新x的右子节点为y
y.parent = x;
x.right = y;
}
}
//打印红黑树树形结构
package com.nko.tree;
// TreeOperation.java
public class TreeOperation {
/*
树的结构示例:
1
/ \
2 3
/ \ / \
4 5 6 7
*/
// 用于获得树的层数
public static int getTreeDepth(RBTree.RBNode root) {
return root == null ? 0 : (1 + Math.max(getTreeDepth(root.getLeft()), getTreeDepth(root.getRight())));
}
private static void writeArray(RBTree.RBNode currNode, int rowIndex, int columnIndex, String[][] res, int treeDepth) {
// 保证输入的树不为空
if (currNode == null) return;
// 先将当前节点保存到二维数组中
res[rowIndex][columnIndex] = String.valueOf(currNode.getKey() + "-" + (currNode.isColor() ? "R" : "B") + "");
// 计算当前位于树的第几层
int currLevel = ((rowIndex + 1) / 2);
// 若到了最后一层,则返回
if (currLevel == treeDepth) return;
// 计算当前行到下一行,每个元素之间的间隔(下一行的列索引与当前元素的列索引之间的间隔)
int gap = treeDepth - currLevel - 1;
// 对左儿子进行判断,若有左儿子,则记录相应的"/"与左儿子的值
if (currNode.getLeft() != null) {
res[rowIndex + 1][columnIndex - gap] = "/";
writeArray(currNode.getLeft(), rowIndex + 2, columnIndex - gap * 2, res, treeDepth);
}
// 对右儿子进行判断,若有右儿子,则记录相应的"\"与右儿子的值
if (currNode.getRight() != null) {
res[rowIndex + 1][columnIndex + gap] = "\\";
writeArray(currNode.getRight(), rowIndex + 2, columnIndex + gap * 2, res, treeDepth);
}
}
public static void show(RBTree.RBNode root) {
if (root == null) System.out.println("EMPTY!");
// 得到树的深度
int treeDepth = getTreeDepth(root);
// 最后一行的宽度为2的(n - 1)次方乘3,再加1
// 作为整个二维数组的宽度
int arrayHeight = treeDepth * 2 - 1;
int arrayWidth = (2 << (treeDepth - 2)) * 3 + 1;
// 用一个字符串数组来存储每个位置应显示的元素
String[][] res = new String[arrayHeight][arrayWidth];
// 对数组进行初始化,默认为一个空格
for (int i = 0; i < arrayHeight; i++) {
for (int j = 0; j < arrayWidth; j++) {
res[i][j] = " ";
}
}
// 从根节点开始,递归处理整个树
// res[0][(arrayWidth + 1)/ 2] = (char)(root.val + '0');
writeArray(root, 0, arrayWidth / 2, res, treeDepth);
// 此时,已经将所有需要显示的元素储存到了二维数组中,将其拼接并打印即可
for (String[] line : res) {
StringBuilder sb = new StringBuilder();
for (int i = 0; i < line.length; i++) {
sb.append(line[i]);
if (line[i].length() > 1 && i <= line.length - 1) {
i += line[i].length() > 4 ? 2 : line[i].length() - 1;
}
}
System.out.println(sb.toString());
}
}
}
//测试类
package com.nko.tree;
import java.util.HashMap;
import java.util.Map;
import java.util.Scanner;
public class RBTreeTest {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
RBTree<String,Object> rbt = new RBTree<String, Object>();
while (true){
System.out.println("请输入key:");
String key = scanner.next();
System.out.println();
rbt.insert(key,null);
Map map = new HashMap();
TreeOperation.show(rbt.getRoot());
}
}
}