- 博客(6)
- 收藏
- 关注
原创 实验四 BP神经网络
平常说的BP神经网络指传统的人工神经网络,相比于卷积神经网络(CNN)来说要简单些。人工神经网络具有复杂模式和进行联想、推理记忆的功能, 它是解决某些传统方法所无法解决的问题的有力工具。目前, 它日益受到重视, 同时其他学科的发展, 为其提供了更大的机会。1986 年, Romelhart 和Mcclelland提出了误差反向传播算法(Error Back Propagation Algorithm) ,简称BP 算法,由于多层前馈网络的训练经常采用误差反向传播算法, 人们也把多层前馈网络称为BP 网络。
2021-11-21 19:39:18 975
原创 实验四 手写数字识别的神经网络算法设计与实现
平常说的BP神经网络指传统的人工神经网络,相比于卷积神经网络(CNN)来说要简单些。人工神经网络具有复杂模式和进行联想、推理记忆的功能, 它是解决某些传统方法所无法解决的问题的有力工具。目前, 它日益受到重视, 同时其他学科的发展, 为其提供了更大的机会。1986 年, Romelhart 和Mcclelland提出了误差反向传播算法(Error Back Propagation Algorithm) ,简称BP 算法,由于多层前馈网络的训练经常采用误差反向传播算法, 人们也把多层前馈网络称为BP 网络。
2021-11-21 19:37:07 519
原创 实验四 手写数字识别的神经网络算法设计与实现
平常说的BP神经网络指传统的人工神经网络,相比于卷积神经网络(CNN)来说要简单些。人工神经网络具有复杂模式和进行联想、推理记忆的功能, 它是解决某些传统方法所无法解决的问题的有力工具。目前, 它日益受到重视, 同时其他学科的发展, 为其提供了更大的机会。1986 年, Romelhart 和Mcclelland提出了误差反向传播算法(Error Back Propagation Algorithm) ,简称BP 算法,由于多层前馈网络的训练经常采用误差反向传播算法, 人们也把多层前馈网络称为BP 网络。
2021-11-21 19:34:14 1101
原创 实验三 最小错误率的贝叶斯分类
1. 最小错误贝叶斯分类器原理在对模式进行识别时,在存在模棱两可的情况下,任何决策都存在判别错误的可能性。最小错误贝叶斯决策就是以错误率为自小的分类规则。使用p(e)表示错误概率,那么最小错误贝叶斯分类器的目的就是minp(e).对于两种模式,其中:即x属于第一类,判别为第二类的概率,x属于第二类,判别为第一类的概率。可以看出使错误率最小的决策就是使后验概率最大的决策,因此最小错误率贝叶斯决策可写为:其中,后验概率的计算使用贝叶斯公式计算,因此要已知先验概率p(ωi)以及类条件概率密度p(x
2021-11-21 19:31:54 873
原创 实验二 势函数算法的迭代训练
一.实验目的通过本实验的学习,使学生了解或掌握模式识别中利用势函数思想设计非线性判别函数的方法,能够实现模式的分类。学会运用已学习的先导课程如数据结构和算法设计知识,选用合适的数据结构完成算法的设计和程序的实现。并通过训练数据来建立非线性判别函数,通过代待分类样本进行分类预测,通过检查预测结果和数据的几何分布特性检验分类器的正确性。通过选用此种分类方法进行分类器设计实验,强化学生对非线性分类器的了解和应用,从而牢固掌握模式识别课程内容知识。二.实验内容 假定对病人3项主要指标检查得到正常(..
2021-10-27 22:39:26 85
原创 聚类算法-最大最小距离算法
最大最小距离算法:最大最小距离算法也成为小中取大距离算法。这种方法首先根据确定的距离阈值寻找聚类中心,然后根据最近邻规则把模式样本划分到各聚类中心对应的类别中。问题的提出已知N个待分类的模式样本{X1,X2,…,Xn},要求分别分类到聚类中心Z1,Z2,…对应的类别中。算法描述1.任选一个模式样本作为第一聚类中心Z1。2.选择离Z1距离最远的模式样本作为第二类聚类中心Z2。3.逐个计算每个模式样本与已知确定的所有聚类中心之间的距离,并选出其中的最小距离。4.在所有最小距离中选出
2021-10-14 11:04:40 5321
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人