矩阵快速幂
很显然就是,矩阵加快速幂的一种算法。要想学会该算法就要先学会矩阵相乘算法和快速幂算法。
快速幂:
快速运算的一种算法。它可以简化运算的次数,已达到高效率。
它就是简单的将指数转化当成二进制。然后进行运算。
例如A^7次怎么运算,一般情况下是乘以7次就可以解决了。完全还可以减少次数。
ANS=1;MULTI=A;
N=7 ;N%2=1; ANS*=MULTI; 所以ANS=A; MULTI*=MULTI; 所以MULTI=A^2
然后 N/=2;N=3; N%2=1; ANS*=MULTI; 所以 ANS=A*A^2=A^3 ; 又MULTI*=MULTI; 所以MULTI=A^4
然后N/=2;N=1;N%2=1;ANS*=MULTI; 所以 ANS=A*A^2*A^4=A^7;又MULTI*=MULTI; 所以MULTI=A^8
然后N/=2;N=0;算法结束 是不是很巧妙呢,实际上用的乘法次数是 6次你可能觉得,那个A^7=A*A*A*A*A*A*A,不也是用了6次乘法吗有什么区别?
这就是快速幂。
矩阵快速幂就是将里面的快速幂是用矩阵表达出来的。很显然就会涉及到矩阵的乘法。也可以运用重载的方式直接定义*
在学矩阵快速幂的时候,刚开始的时候还是先不用重载比较好,先用矩阵陈发,运用矩阵乘法可以更好的感受其中带来的
奥妙,再用重载就会好很多,而且就更容易理解。(补充一点的就是:重载就是根据条件的不同选择不同的调用函数。在这里
要表达的意思是将*号重新第一,变成自己想要的那种矩阵运算)。至于矩阵怎么乘法运算的。建议去看一下,线性代数书本。就会
明白怎么用的。其实很简单。
一道简单的练习题
Tr A
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 5184 Accepted Submission(s): 3879
每组数据的第一行有n(2 <= n <= 10)和k(2 <= k < 10^9)两个数据。接下来有n行,每行有n个数据,每个数据的范围是[0,9],表示方阵A的内容。
2 2 2 1 0 0 1 3 99999999 1 2 3 4 5 6 7 8 9
2 2686
下面给出自己代码:
//定义一个结构体,来装这个矩阵,下面的这个是单位矩阵。
int n,m;
struct node
{
int a[15][15];
void init()
{
memset(a,0,sizeof(a));
for(int i=0;i<15;i++)
a[i][i]=1;
}
}b;
//重载,在这里重新定义了一下*
node operator*(node a1,node a2)
{
node ans;
// memset(ans.a,0,sizeof(ans.a));
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
ans.a[i][j]=0;
for(int k=0;k<n;k++)
{
ans.a[i][j]+=a1.a[i][k]*a2.a[k][j];
}
ans.a[i][j]=ans.a[i][j]%9973;
}
}
return ans;
}
//矩阵快速幂
node pow1(node a1,int m)
{
node ans;
ans.init();
while(m)
{
if(m&1)
ans=ans*a1;
a1=a1*a1;
m>>=1;
}
return ans;
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
scanf("%d",&b.a[i][j]);
}
node ans=pow1(b,m);
int sum=0;
for(int i=0;i<n;i++)
{
sum+=ans.a[i][i];
sum=sum%9973;
}
printf("%d\n",sum);
}
}
上面是重载写矩阵快速幂
也可以用矩阵乘法写矩阵快速幂
node mull(node a1,node a2)
{
node ans;
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
ans.a[i][j]=0;
for(int k=0;k<n;k++)
{
ans.a[i][j]+=a1.a[i][k]*a2.a[k][j];
}
ans.a[i][j]%=9973;
}
}
return ans;
}
node pow1(node a1,int m)
{
node ans;
ans.init();
while(m)
{
if(m&1)
ans=mull(ans,a1);
a1=mull(a1,a1);
m>>=1;
}
return ans;
}
刚开始的时候来写矩阵快速幂,我更懂得了重载的定义。感觉很清晰
到目前为止终于将矩阵快速幂了解各入门,还要接着深入学。。。。。。