排序算法-希尔排序详细讲解(ShellSort)

本文介绍了希尔排序,一种基于插入排序的快速排序算法,通过分组和缩小增量的方式提高效率。讲解了其工作原理、代码演示以及不同增量序列对时间复杂度的影响,重点讨论了常用增量序列如希尔增量序列、Hibbard序列和Sedgewick序列。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

希尔排序

一种基于插入排序的快速的排序算法。简单插入排序对于大规模乱序数组很慢,因为元素只能一点一点地从数组的一端移动到另一端。希尔排序为了加快速度简单地改进了插入排序,也称为缩小增量排序。是一种不稳定排序算法

希尔排序是把待排序数组按一定的数量分组,对每组使用直接插入排序算法排序;然后缩小数量继续分组排序,随着数量逐渐减少,每组包含的元素越来越多,当数量减至 1 时,整个数组恰被分成一组,排序便完成了。这个不断缩小的数量,就构成了一个增量序列,这里的数量称为增量(其实也叫步长)

代码演示

public static  void shellSort(int array[]){
        int len = array.length;
        //当前待排序数据,该数据之前的已被排序
        int current;
        //增量
        int step = len / 2;
        while (step > 0) {
            for (int i = step; i < len; i++) {
                current = array[i];
                //前面有序序列的索引
                int index = i - step;
                while (index >= 0 && current < array[index]) {
                    array[index + step] = array[index];
                    //有序序列的下一个
                    index -= step;
                }
                //插入
                array[index + step] = current;
            }
            //int相除取整
            step = step / 2;
        }
    }

    public static void main(String[] args) {
        int arr[]={4,4,6,5,3,2,8,1,9,3,5,6,7,12,23,34,21,22,14,19};
        shellSort(arr);
        System.out.println(Arrays.toString(arr));
    }

关于时间复杂度

希尔排序的复杂度和增量序列有关。

在先前较大的增量下每个子序列的规模都不大,用直接插入排序效率都较高,尽管在随后的增量递减分组中子序列越来越大,由于整个序列的有序性也越来越明显,则排序效率依然较高。

从理论上说,只要一个数组是递减的,并且最后一个值是1,都可以作为增量序列使用。有没有一个步长序列,使得排序过程中所需的比较和移动次数相对较少,并且无论待排序列记录数有多少,算法的时间复杂度都能渐近最佳呢?但是目前从数学上来说,无法证明某个序列是最好的。

常用的增量序列:

  • 希尔增量序列 :{n/2, (n / 2)/2, …, 1},其中N为原始数组的长度,这是最常用的序列,但却不是最好的
  • Hibbard序列:{2k-1, …, 3,1}
  • Sedgewick序列:{… , 109 , 41 , 19 , 5,1} 表达式为9 * 4i- 9 * 2i + 1,i = 0,1,2,3,4…

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值