希尔排序
一种基于插入排序的快速的排序算法。简单插入排序对于大规模乱序数组很慢,因为元素只能一点一点地从数组的一端移动到另一端。希尔排序为了加快速度简单地改进了插入排序,也称为缩小增量排序。是一种不稳定排序算法
希尔排序是把待排序数组按一定的数量分组,对每组使用直接插入排序算法排序;然后缩小数量继续分组排序,随着数量逐渐减少,每组包含的元素越来越多,当数量减至 1 时,整个数组恰被分成一组,排序便完成了。这个不断缩小的数量,就构成了一个增量序列,这里的数量称为增量(其实也叫步长)
代码演示
public static void shellSort(int array[]){ int len = array.length; //当前待排序数据,该数据之前的已被排序 int current; //增量 int step = len / 2; while (step > 0) { for (int i = step; i < len; i++) { current = array[i]; //前面有序序列的索引 int index = i - step; while (index >= 0 && current < array[index]) { array[index + step] = array[index]; //有序序列的下一个 index -= step; } //插入 array[index + step] = current; } //int相除取整 step = step / 2; } } public static void main(String[] args) { int arr[]={4,4,6,5,3,2,8,1,9,3,5,6,7,12,23,34,21,22,14,19}; shellSort(arr); System.out.println(Arrays.toString(arr)); }
关于时间复杂度
希尔排序的复杂度和增量序列有关。
在先前较大的增量下每个子序列的规模都不大,用直接插入排序效率都较高,尽管在随后的增量递减分组中子序列越来越大,由于整个序列的有序性也越来越明显,则排序效率依然较高。
从理论上说,只要一个数组是递减的,并且最后一个值是1,都可以作为增量序列使用。有没有一个步长序列,使得排序过程中所需的比较和移动次数相对较少,并且无论待排序列记录数有多少,算法的时间复杂度都能渐近最佳呢?但是目前从数学上来说,无法证明某个序列是最好的。
常用的增量序列:
- 希尔增量序列 :{n/2, (n / 2)/2, …, 1},其中N为原始数组的长度,这是最常用的序列,但却不是最好的
- Hibbard序列:{2k-1, …, 3,1}
- Sedgewick序列:{… , 109 , 41 , 19 , 5,1} 表达式为9 * 4i- 9 * 2i + 1,i = 0,1,2,3,4…