CSP历年真题201512-2-消除类游戏(Java)

问题描述

消除类游戏是深受大众欢迎的一种游戏,游戏在一个包含有n行m列的游戏棋盘上进行,棋盘的每一行每一列的方格上放着一个有颜色的棋子,当一行或一列上有连续三个或更多的相同颜色的棋子时,这些棋子都被消除。当有多处可以被消除时,这些地方的棋子将同时被消除。

现在给你一个n行m列的棋盘,棋盘中的每一个方格上有一个棋子,请给出经过一次消除后的棋盘。

请注意:一个棋子可能在某一行和某一列同时被消除。

输入格式

输入的第一行包含两个整数n, m,用空格分隔,分别表示棋盘的行数和列数。

接下来n行,每行m个整数,用空格分隔,分别表示每一个方格中的棋子的颜色。颜色使用1至9编号。

输出格式

输出n行,每行m个整数,相邻的整数之间使用一个空格分隔,表示经过一次消除后的棋盘。如果一个方格中的棋子被消除,则对应的方格输出0,否则输出棋子的颜色编号。

样例输入

4 5
2 2 3 1 2
3 4 5 1 4
2 3 2 1 3
2 2 2 4 4

样例输出

2 2 3 0 2
3 4 5 0 4
2 3 2 0 3
0 0 0 4 4

样例说明

棋盘中第4列的1和第4行的2可以被消除,其他的方格中的棋子均保留。
样例输入。

样例输入

4 5
2 2 3 1 2
3 1 1 1 1
2 3 2 1 3
2 2 3 3 3

样例输出

2 2 3 0 2
3 0 0 0 0
2 3 2 0 3
2 2 0 0 0

样例说明

棋盘中所有的1以及最后一行的3可以被同时消除,其他的方格中的棋子均保留。

评测用例规模与约定

所有的评测用例满足:1 ≤ n, m ≤ 30。

代码

import java.util.Scanner;

class Node{
    int a;
    int b;
}

public class Main {
    public static void main(String[] args){
        Scanner in = new Scanner(System.in);
        int n = in.nextInt();
        int m = in.nextInt();
        Node[][] a = new Node[n][m];

        // 输入数据
        for(int i = 0; i < n; i++){
            for(int j = 0; j < m; j++){
                a[i][j] = new Node();
                a[i][j].a = in.nextInt();
                a[i][j].b = a[i][j].a;
            }
        }

        // 处理
        int temp;
        for(int i = 0; i < n; i++){
            for(int j = 0; j < m; j++){
                temp = a[i][j].a;

                // 判断行
                if(j+2 < m && temp == a[i][j+1].a && temp == a[i][j+2].a){
                    a[i][j].b = 0;
                    a[i][j+1].b = 0;
                    a[i][j+2].b = 0;
                }

                // 判断列
                if(i+2 < n && temp == a[i+1][j].a && temp == a[i+2][j].a){
                    a[i][j].b = 0;
                    a[i+1][j].b = 0;
                    a[i+2][j].b = 0;
                }
            }
        }

        // 输出
        for(int i = 0; i < n; i++){
            for(int j = 0; j < m; j++){
                System.out.print(a[i][j].b + " ");
            }
            System.out.println();
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值