问题描述
数轴上有一条长度为L(L为偶数)的线段,左端点在原点,右端点在坐标L处。有n个不计体积的小球在线段上,开始时所有的小球都处在偶数坐标上,速度方向向右,速度大小为1单位长度每秒。
当小球到达线段的端点(左端点或右端点)的时候,会立即向相反的方向移动,速度大小仍然为原来大小。
当两个小球撞到一起的时候,两个小球会分别向与自己原来移动的方向相反的方向,以原来的速度大小继续移动。
现在,告诉你线段的长度L,小球数量n,以及n个小球的初始位置,请你计算t秒之后,各个小球的位置。
提示
因为所有小球的初始位置都为偶数,而且线段的长度为偶数,可以证明,不会有三个小球同时相撞,小球到达线段端点以及小球之间的碰撞时刻均为整数。
同时也可以证明两个小球发生碰撞的位置一定是整数(但不一定是偶数)。
输入格式
输入的第一行包含三个整数n, L, t,用空格分隔,分别表示小球的个数、线段长度和你需要计算t秒之后小球的位置。
第二行包含n个整数a1, a2, …, an,用空格分隔,表示初始时刻n个小球的位置。
输出格式
输出一行包含n个整数,用空格分隔,第i个整数代表初始时刻位于ai的小球,在t秒之后的位置。
样例输入
3 10 5
4 6 8
样例输出
7 9 9
样例说明
样例输入
10 22 30
14 12 16 6 10 2 8 20 18 4
样例输出
6 6 8 2 4 0 4 12 10 2
数据规模和约定
对于所有评测用例,1 ≤ n ≤ 100,1 ≤ t ≤ 100,2 ≤ L ≤ 1000,0 < ai < L。L为偶数。
保证所有小球的初始位置互不相同且均为偶数。
代码
import java.util.Scanner;
class Ball{
int pos; //表示小球初始时的位置坐标
int dir; //表示小球移动的方向,1为向右,-1为向左,默认向右
}
public class Main {
public static void main(String[] args){
Scanner in = new Scanner(System.in);
int n = in.nextInt(); //小球的个数
int L = in.nextInt(); //线段长度
int t = in.nextInt(); //t秒之后小球的位置
Ball[] a = new Ball[n];
for(int i = 0; i < n; i++){
a[i] = new Ball();
a[i].pos = in.nextInt();
a[i].dir = 1; //小球移动方向默认向右
if(a[i].pos == L){ //若小球i正好在右端点,则移动方向应该为向左
a[i].dir = -1;
}
}
in.close();
//开始移动
for(int i = 0; i < t; i++){
//处理单个球碰墙
for(int j = 0; j < n; j++){
a[j].pos += a[j].dir; //小球向右或者向左走一步
if(a[j].pos == L || a[j].pos == 0){ //小球向右或者向左走一步后,正好到了右端点或左端点(碰墙),则反弹
a[j].dir = -a[j].dir; //碰墙则反弹,移动方向改变
}
}
//处理相邻两个球碰撞
for(int j = 0; j < n-1; j++){
for(int k = j+1; k < n; k++){
if(a[j].pos == a[k].pos){ //两球相撞,则各自反向
a[j].dir = -a[j].dir;
a[k].dir = -a[k].dir;
}
}
}
}
// 输出
for(int i = 0; i < n; i++){
System.out.print(a[i].pos + " ");
}
}
}