package kafka
import org.apache.spark.SparkConf
import org.apache.spark.streaming.kafka010.KafkaUtils
import org.apache.spark.streaming.{Duration, StreamingContext}
import org.apache.spark.streaming.kafka010.LocationStrategies.PreferConsistent
import org.apache.spark.streaming.kafka010.ConsumerStrategies.Subscribe
/*记得添加依赖<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-kafka-0-10_2.11</artifactId>
<version>2.2.0</version>
</dependency>*/
object KafkaSparkStreaming {
val conf=new SparkConf().setMaster("local[*]").setAppName("data from kafka")
val ssc=new StreamingContext(conf,Duration(5))
def main(args: Array[String]): Unit = {
//kafka的配置参数
val kafkaParams = Map(
"bootstrap.servers" -> "master:9092,master:9093",
("key.deserializer" -> "org.apache.kafka.common.serialization.StringDeserializer"),
"value.deserializer" -> "org.apache.kafka.common.serialization.StringDeserializer",
"group.id" -> "kafkaTest",
"enable.auto.commit" -> "false"
)
val topics = Set("spark")//创建topic
val kafkaDstream = KafkaUtils.createDirectStream[String, String](
ssc,
PreferConsistent,//本地策略
Subscribe[String, String](topics, kafkaParams)//消费策略
).map(x=>x.value())
.flatMap(_.split("\\s"))
.map((_,1))
.reduceByKey(_+_)
.print()
ssc.start()
ssc.awaitTermination()
}
}