傅立叶变换

一、傅里叶级数:周期性 f(t) = 正(余)弦

 里叶级数证明周期性函数能够被转化为一系列的正余弦函数,我们来举个例子。

图1的周期性函数可以被分解为一系列正余弦函数相加,而这些正余弦函数的频率 \omega 和振幅都可以是不一样的。此时,有

 

                                                         \large f(t)=sin(t)+sin(2t)+sin(3t)

 

                                                                                    图1   周期性函数的分解

在图1中,我们看到坐标轴上的频域和时域,它们的具体含义如下:

时域指的是信号随着时间的变化,也就是时间领域的一个信号

频域指的是在不同频率的情况下,每一个信号的大小。

接下来我们单独看 \large \omega(频率) 轴与 f (t) 的关系,其中 f (t) 表示信号的振幅,这样我们就能把含有不同的频率分量表示出来,这样我们就得到了一个频域图或者称为傅立叶变换。

                                                                                             图2  频域图

在这里我们还需要引入一个概念,即相位 。那么什么是相位呢?

在百度百科里面是这么解释的,相位(phase)是对于一个波,特定的时刻在它循环中的位置:一种它是否在波峰、波谷或它们之间的某点的标度。相位描述信号波形变化的度量,通常以度 (角度)作为单位,也称作相角。 当信号波形以周期的方式变化,波形循环一周即为360° 。

相位简单来说,可以被描述为信号起始点的位置。但是看起来可能还是比较抽象,为了更好的解释相位这个概念,我们接着来看图。

                                                                                               图3 

如果信号的起始点在位置1,那么相位为0,如果信号的起始点在位置2,那么相位为 \small \frac{\pi}{2} 。

讲完相位的概念,我们接着介绍傅里叶变换,那么由图1中的连续函数进行傅里叶变换之后会得到三个信息:

1.一系列的频率,我们可以知道该信号中包含了多少频率 

2.每一个频率的振幅是多大

3.每一个频率的相位是多少

有了这三个信息,我们很容易的能够将这三个信息组合起来反变换回去,重新得到时域信号。

到这里,傅里叶级数的公式也就不难理解了。

                              \small f(t)=\frac{a_{0}}{2}+\sum a_{n}sin(n\omega t+\varphi _n) =\frac{a_{0}}{2}+\sum a_{n}sinn\omega t+\sum b_{n}cosn\omega t

根据我们上面所介绍的内容,傅里叶级数就是把一个周期性函数转化为频率 \large \omega ,振幅以及相位 \large \varphi 的线性组合。

 

二、傅里叶变换

在介绍傅里叶变换之前,我们需要提及欧拉公式

                                                        \large cos\theta +isin\theta=e^{i\theta} 

 通过欧拉公式,我们可以将 sin 和 cos 的线性组合表示为 e 的幂的形式。

由于\large \theta=\omega t,我们可以将欧拉公式表示为\large cos\theta+isin\theta=e^{i\omega t}

接下来我们进入正题,傅里叶变换。

同样的,我们需要引入一个连续函数。

                                                                                        图4  连续函数

对于这个连续函数,我们可以看作是一个周期性无穷大的周期函数,它里面肯定能分出一系列的各种频率来。

我们根据标准正交基的含义,假如在这些频率中有一个频率是 \large \omega 的 \large sin 信号 ,我们用 \large sin 去乘,就能把这个信号给乘出来,也就是将这个信号提取出来,而其他的 \large cos 分量都会弄没。

在傅里叶变换中,对内积的定义是一个积分形式,即傅里叶变换公式

因为傅里叶变换的本质是内积,所以 f(t) 和 \large e^{j\omega t} 求内积的时候,只有 f (t) 中频率为 \large \omega 的分量才会有内积的结果,其余分量的内积为0。 但 f(t) 中不含 \large \omega ,则该公式的结果为0,当 f(t) 中含有 \large \omega ,则公式的计算结果不为0。

因为欧拉公式中包含实部和虚部,因此,通过傅里叶变换公式,我们可以将图4中的周期函数转换为以下形式,包括两个部分:实部和虚部。

                                                                                         图5  傅里叶变换

实部部分表示对应频率 \large \omega 下的频率分量大小,在这个图中,频率 \large \omega 是连续的,表示的是每一个频率都有。

虚部部分不同情况下的相位不同。

那么,如何从傅里叶变换后的信号回到原始信号呢?我们需要通过傅里叶变换的逆变换来实现。

傅里叶变换的逆变换公式:

 这样呢,我们就实现了把一个信号拆成很多个正余弦信号,以及把一系列的正余弦信号逆变回原来的信号。

  • 1
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值