第二周刷题总结
#leetcode
#回溯算法
本周主要是做了leetcode关于回溯算法的相关题目,总结了一些算法类型与答题模板。
1.答题模板
(1)先画出递归树,找到状态变量,进而推出回溯函数的参数
(2)根据题意,确立结束条件
(3)进行选择
(4)进入递归函数,注意传入的起始参数
(5)回溯
2.递归树(以子集问题为例)
3.回溯算法的题目类型及其特点
类型 | 特点 |
---|---|
子集问题 | 无顺序、结果在递归树结点上收集 |
组合问题 | 无顺序、结果在递归树叶子节点上面收集 |
排列问题 | 有顺序、结果在递归树子节点上面收集 |
当然,除了上面三种基础的回溯问题外,还有切割、棋盘搜索等问题,在此暂不讨论。
4.例题
①子集
给定一组不含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集),解集不能包含重复的子集。
示例:
输入: nums = [1,2,3]
输出:
[
[3],
[1],
[2],
[1,2,3],
[1,3],
[2,3],
[1,2],
[]
]
class Solution {
public:
vector<vector<int>> subsets(vector<int>& nums) {
vector<vector<int>> result;
vector<int> path;
backtracking(nums,result,path,0);
return result;
}
void backtracking(vector<int>&nums,vector<vector<int>>&result,vector<int>&path,int firstIndex){
result.push_back(path);
for(int i=firstIndex;i<nums.size();++i){
path.push_back(nums[i]);
backtracking(nums,result,path,i+1);
path.pop_back();
}
}
};
②子集Ⅱ
相对于上一题子集,此题给定的是一个可能包含重复元素的整数数组 nums
class Solution {
public:
vector<vector<int>> result;
vector<int> path;
void backtracking(vector<int>& nums, vector<bool>& used,int start){
result.push_back(path);
for(int i=start;i<nums.size();i++){
if(i>0&&nums[i]==nums[i-1]&& used[i-1] == false){
continue;
}
path.push_back(nums[i]);
used[i] = true;
backtracking(nums,used,i+1);
used[i] = false;
path.pop_back();
}
}
vector<vector<int>> subsetsWithDup(vector<int>& nums) {
sort(nums.begin(),nums.end());
vector<bool> used(nums.size(),false);
backtracking(nums,used,0);
return result;
}
};
③组合
给定两个整数 n 和 k,返回 1 … n 中所有可能的 k 个数的组合。
示例:
输入: n = 4, k = 2
输出:
[
[2,4],
[3,4],
[2,3],
[1,2],
[1,3],
[1,4],
]
class Solution {
public:
vector<vector<int>> result;
vector<int> path;
vector<vector<int>> combine(int n, int k) {
backtracking(n,k,1);
return result;
}
void backtracking(int n,int k,int startIndex){
if(path.size() == k){
result.push_back(path);
return;
}
for(int i = startIndex;i<=n;i++){
path.push_back(i);
backtracking(n,k,i+1);
path.pop_back();
}
}
};
④组合总和
给定一个无重复元素的数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。
candidates 中的数字可以无限制重复被选取。
示例 1:
输入:candidates = [2,3,6,7], target = 7,
所求解集为:
[
[7],
[2,2,3]
]
class Solution {
public:
vector<vector<int>> result;
vector<int> path;
void backtracking(vector<int>& candidates,int target,int sum,int start){
if(sum == target){
result.push_back(path);
return;
}
for(int i=start;i<candidates.size() && sum+candidates[i]<=target;i++){// 如果 sum + candidates[i] > target 就终止遍历
sum += candidates[i];
path.push_back(candidates[i]);
backtracking(candidates,target,sum,i);
sum -= candidates[i];
path.pop_back();
}
}
vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
sort(candidates.begin(),candidates.end());//首先进行一遍排序
backtracking(candidates,target,0,0);
return result;
}
};
⑤组合总和Ⅱ
与上一题不同的是,candidates 中的每个数字在每个组合中只能使用一次。
class Solution {
public:
vector<vector<int>> result;
vector<int> path;
void backtracking(vector<int>& candidates,int target,int sum,int start,vector<bool>& uesd){
if(sum == target){
result.push_back(path);
return;
}
for(int i=start;i<candidates.size() && sum+candidates[i]<=target;i++){// 如果 sum + candidates[i] > target 就终止遍历
if(i>0 && candidates[i]==candidates[i-1] && uesd[i-1]==false) continue;
sum += candidates[i];
path.push_back(candidates[i]);
uesd[i] = true;
backtracking(candidates,target,sum,i+1,uesd);
uesd[i] = false;
sum -= candidates[i];
path.pop_back();
}
}
vector<vector<int>> combinationSum2(vector<int>& candidates, int target) {
sort(candidates.begin(),candidates.end());//首先进行一遍排序
vector<bool> uesd(candidates.size(),false);
backtracking(candidates,target,0,0,uesd);
return result;
}
};
⑥全排列
给定一个 没有重复 数字的序列,返回其所有可能的全排列。
示例:
输入: [1,2,3]
输出:
[
[1,2,3],
[1,3,2],
[2,1,3],
[2,3,1],
[3,1,2],
[3,2,1]
]
class Solution {
public:
vector<vector<int>> result;
vector<int> path;
void backtracking(vector<int>& nums,vector<bool>& used){
if(path.size()==nums.size()){
result.push_back(path);
return ;
}
for(int i=0;i<nums.size();i++){
if(used[i]==true) continue;
used[i] = true;
path.push_back(nums[i]);
backtracking(nums,used);
path.pop_back();
used[i] = false;
}
}
vector<vector<int>> permute(vector<int>& nums) {
vector<bool> used(nums.size(),false);
backtracking(nums,used);
return result;
}
};
⑦全排列Ⅱ
与上一题不同,nums是一个可包含重复数字的序列。
class Solution {
public:
vector<vector<int>> result;
vector<int> path;
void backtracking(vector<int>& nums,vector<bool>& used){
if(path.size() == nums.size()){
result.push_back(path);
return ;
}
for(int i=0;i<nums.size();i++){
if(i>0 && nums[i]==nums[i-1] && used[i-1]==false) continue;
if(used[i] == false){
used[i] = true;
path.push_back(nums[i]);
backtracking(nums,used);
path.pop_back();
used[i] = false;
}
}
}
vector<vector<int>> permuteUnique(vector<int>& nums) {
sort(nums.begin(),nums.end());
vector<bool> used(nums.size(),false);
backtracking(nums,used);
return result;
}
};