数码照片回执可以自己在网上弄吗?

本文介绍了照片回执的定义和用途,指出数码照片回执可在网上制作。以支付宝“证件照带回执”功能为例,详细说明了制作流程,包括选择办证城市、拍照上传检测支付、选择证件照类型等,还解答了制作的回执能否用于办证的疑问。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

相信很多人都有这样的疑问:数码照片回执可以自己在网上弄吗?还是说必须要去照相馆或办证点才能办理?

在揭晓这个问题的答案之前,先来了解一下所谓的照片回执是什么,又有什么作用:

照片回执是一张照相证明(此证明上有你所照的相片及与公安部门联网的电脑条码)。办理证件的时候,可以通过回执单上的条码/图像号在数据库里提取到你的照片信息。

一般办理护照、港澳通行证、台湾通行证、身份证、居住证、驾驶证、社保卡等一些有效身份证件时,往往需要递交数码照片回执。

数码照片回执完全可以自己在网上制作,只需要用到支付宝里的一个功能——『证件照带回执』——支持手机拍摄制作证件照,在线出具数码照片回执。
在这里插入图片描述

那么如何才能快速找到该功能呢?有两种方式:

一种是在支付宝首页直接搜索“证件照带回执”, 另一种是打开支付宝首页后,依次点击“更多—便民生活—城市服务—政务—证件照带回执”。

【照片回执网上制作教程】

1.通过支付宝进入“证件照带回执”应用页面后,首先选择好办证城市。

比如想在深圳市办证,将城市定位到“深圳市”后,可以清楚地看到该城市下具体有哪一些证件照类型是支持出具照片回执的。
在这里插入图片描述
这个步骤很重要,一来可以避免选择错办证城市,二来可以了解到自己想要制作的照片回执,该平台是否能够提供(留意证件照图标右上角有无“官方回执”字样)。

2.确认好办证城市和证件照类型后,接下来就是“拍照-上传-检测-支付”环节了。
在这里插入图片描述

3.照片经检测合格后,再根据自己的需求选择是要“电子证件照+回执”或是“纸质证件照+回执(包邮、赠送电子版)”。
在这里插入图片描述

重点来了:

问:个人用户在支付宝app里制作出来的数码照片回执能直接用于办证吗?
答:『证件照带回执』出具照片回执的处理流程与线下照相馆一致,只要成功获取了的,都可以直接用于办证。

### 如何在神经网络架构图中正确绘制和表示MobileNetV2 为了清晰地展示MobileNetV2的结构特点,可以按照以下方式构建其架构图: #### 1. 输入层 - 使用矩形框代表输入图像尺寸,通常标注为`Input (224x224x3)`。 #### 2. 初始卷积层 - 绘制一个标准的卷积操作节点,标记为`Conv2D (3x3, s=2, filters=32)`。这一步骤用于初步降采样并提取基础特征[^2]。 #### 3. 倒残差模块(Inverted Residual Blocks) 这是MobileNetV2的核心组成部分之一: - 每个倒残差模块由三个主要部分组成:逐点扩张卷积(Pointwise Expansion Convolution),深度可分离卷积(Depthwise Separable Convolution)以及线性瓶颈(Linear Bottleneck)。 - 对于每个这样的单元格,应该画出膨胀后的通道数、使用的内核大小及步幅等细节信息。例如:`t=6, c=16, n=1, s=1` 表示扩展因子为6,输出通道数量为16,重复次数为1次,步长为1。 - 如果存在跳跃连接(Skip Connection),则需用虚线箭头指向下一个相同分辨率阶段的第一个block入口处来体现这一点。 #### 4. 中间过渡层 - 描述不同尺度下的特征映射变化情况,比如从高维低分辨率向低维高分辨率转变的过程。这些转换通常是通过调整stride参数实现的。 #### 5. 输出分类器 - 添加全局平均池化(Global Average Pooling)层之后接Softmax激活函数构成最终预测分支。此部分可以用简单的矩形加文字说明:“GAP -> FC -> SoftMax”。 ```mermaid graph TB; A[Input (224x224x3)] --> B{Initial Conv}; B --> C((Inverted Res Block t=1,c=16,n=1,s=1)); C --> D((Inverted Res Block t=6,c=24,n=2,s=2)); D --> E((Inverted Res Block t=6,c=32,n=3,s=2)); E --> F((Inverted Res Block t=6,c=64,n=4,s=2)); F --> G((Inverted Res Block t=6,c=96,n=3,s=1)); G --> H((Inverted Res Block t=6,c=160,n=3,s=2)); H --> I((Inverted Res Block t=6,c=320,n=1,s=1)); I --> J{Final Conv}; J --> K(GAP); K --> L(Fully Connected Layer); L --> M(SoftMax Output); ``` 上述Mermaid图表展示了简化版的MobileNetV2框架布局,其中包含了各个重要组件之间的关系及其处理逻辑。实际应用时可根据具体需求进一步细化各层次内部的具体配置参数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值