激活函数

激活函数的主要作用:加入非线性

#_*_ coding:UTF-8 _*_

import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf

#创建输入数据
x=np.linspace(-7,7,180) #(-7,7)之间的等间隔的180个点

#1.激活函数的原始实现
def sigmoid(inputs):
    y=[1/float(1+np.exp(-x)) for x in inputs]
    return y

def relu(inputs):
    y=[x*(x>0) for x in inputs]
    return y

def tanh(inputs):
    y=[(np.exp(x) - np.exp(-x))/float(np.exp(x) + np.exp(-x)) for x in inputs]
    return y

def softplus(inputs):
    y=[np.log(1+np.exp(x)) for x in inputs]
    return y

#2.实际计算经过Tensorflow的激活函数处理的各个Y值
y_sigmoid=tf.nn.sigmoid(x)
y_relu = tf.nn.relu(x)
y_tanh = tf.nn.tanh(x)
y_softplus=tf.nn.softplus(x)

#创建会话
sess = tf.Session()

#运行
y_sigmoid,y_relu, y_tanh, y_softplus = sess.run([y_sigmoid, y_relu,y_tanh,y_softplus])

#创建各个激活函数的图像
plt.subplot(221)#2行2列第1个
plt.plot(x,y_sigmoid,c="red",label="Sigmoid")
plt.ylim(-0.2, 1.2)
plt.legend(loc="best")


plt.subplot(222)#2行2列第2个
plt.plot(x,y_relu,c="red",label="Relu")
plt.ylim(-1, 6)
plt.legend(loc="best")


plt.subplot(223)#2行2列第3个
plt.plot(x,y_tanh,c="red",label="Tanh")
plt.ylim(-1.3, 1.3)
plt.legend(loc="best")


plt.subplot(224)#2行2列第4个
plt.plot(x,y_softplus,c="red",label="Softplus")
plt.ylim(-1, 6)
plt.legend(loc="best")


#显示图像
plt.show()

#关闭会话
sess.close()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值