- 博客(57)
- 收藏
- 关注
原创 Decision Trees vs Neural Networks|决策树 vs 神经网络
本文对比了决策树与神经网络两种机器学习模型的特点。决策树适合结构化数据,训练速度快且可解释性强,但处理非结构化数据能力有限;神经网络适用于各类数据,支持迁移学习但训练较慢。文章还从复杂度、资源需求、泛化能力等方面进行分析,并指出决策树在可解释性AI和集成学习中的优势,以及神经网络在深度学习领域的潜力。更多计算机相关内容可访问博客网站rn.berlinlian.cn。
2025-09-19 23:16:11
769
原创 XGBoost Algorithm|XGBoost算法
XGBoost是一种高效的梯度提升算法,通过组合多个决策树逐步提升预测精度。它具有处理大规模数据、自动处理缺失值、内置正则化防止过拟合等优势。算法流程包括迭代训练、重点关注错误样本等步骤。文章还介绍了XGBoost在分类和回归任务中的基本代码实现,并欢迎访问作者博客获取更多计算机知识。博客地址:rn.berlinlian.cn
2025-09-17 15:49:27
1053
原创 Tree Ensembles|树集成
本文介绍了树集成的概念及其优势。树集成通过组合多个决策树模型(如随机森林)来提高预测准确性和稳定性,类似于集体决策比个人判断更可靠。文章通过示例展示了决策树对数据微小变化的高度敏感性:同一动物在不同决策树中因特征差异可能得到不同分类结果。最后,用三个决策树对同一只猫样本进行分类预测的案例,直观呈现了树集成方法中个体决策树可能产生分歧,但通过整合多个结果可提升整体预测性能。更多计算机知识欢迎访问博客rn.berlinlian.cn。
2025-09-16 15:07:28
1160
原创 Regression Trees|回归树
本文介绍了回归树的定义、构建与预测过程。回归树通过特征空间划分实现连续值预测,适用于房价、股价等场景。文章以动物体重预测为例,详细解析了决策节点分裂过程,包括初始方差计算、分裂后加权方差比较及最佳分裂点选择方法(如耳朵形状分裂使方差减少最多)。该算法通过最大化信息增益提升预测准确性。更多计算机知识欢迎访问博客网站rn.berlinlian.cn交流。
2025-09-15 16:30:53
1061
原创 Continuous valued features|连续的有价值特征
本文介绍了如何使用连续特征构建决策树进行宠物分类。通过一个包含耳朵形状、脸型、胡须和体重等特征的猫狗数据集,重点讲解了如何将连续变量"体重"转换为分类特征:选择不同分割点计算信息增益,选取最佳分割点构建决策树节点,并递归分割直至满足停止条件。文章详细说明了从识别连续特征到评估模型的全过程,展示了连续特征在机器学习分类任务中的关键作用。更多计算机知识欢迎访问博客网站rn.berlinlian.cn。
2025-09-14 12:15:57
1036
原创 One-hot encoding|独热编码
本文介绍了独热编码(One-hot encoding)的定义及其在分类特征处理中的应用。独热编码通过为每个类别创建二进制列(如类别A编码为[1,0,0])将分类变量转换为数值形式,便于机器学习模型处理。文章以"耳朵形状"等特征为例,展示了原始分类数据到独热编码的转换过程,并说明其在神经网络中的应用原理——编码后的数值作为输入特征,帮助模型学习与目标变量的关联。该技术是机器学习中处理分类数据的常用方法。更多计算机知识欢迎访问作者博客网站rn.berlinlian.cn。
2025-09-13 16:28:13
1164
原创 如何在Hugging Face中下载全部文件?
本文介绍了从HuggingFace平台下载资源的两种方法:1)使用git clone命令直接克隆仓库文件;2)通过huggingface_hub环境下载。第一种方法操作简单但可能出现文件不全的问题,第二种方法虽步骤稍多但更稳定可靠。文章以bert-base-uncased模型为例,详细说明了两种方法的操作流程。作者推荐使用第二种方法确保下载完整性。更多计算机相关知识可访问作者博客网站rn.berlinlian.cn。
2025-09-12 17:16:39
1258
原创 Information Gain|信息增益
信息增益是决策树中衡量特征对分类贡献的重要指标,它基于熵来评估数据集的不确定性,通过计算分裂前后熵的减少量,反映某个特征对提高分类有序性的作用。信息增益越大,说明该特征越能有效区分数据,提升模型的预测准确性,因此常被选作分裂节点的依据。欢迎来 rn.berlinlian.cn 进行交流。
2025-09-11 13:22:11
781
原创 Entropy|熵
本文介绍了信息论中的熵概念及其在机器学习中的应用。熵用于衡量数据集的不确定性或纯度,熵值越高表示数据越混乱。文章通过图表展示了熵随样本比例变化的趋势,并举例说明不同猫狗比例下的熵值变化。重点讲解了决策树中如何通过信息增益选择最佳分裂属性,以耳形、脸型和胡须为例计算信息增益,其中耳形分裂的信息增益最大(0.28)。更多计算机知识欢迎访问博客网站rn.berlinlian.cn交流讨论。
2025-09-10 17:06:51
1063
原创 The learning process of Decision Tree Model|决策树模型学习过程
这篇文章介绍了决策树模型的原理和应用。通过一个区分猫与非猫的示例,详细解释了决策树的结构(包括根节点、分支、叶节点)和分类规则(基于耳朵形状、面部形状、胡须等特征)。文章还阐述了决策树学习中的两个关键点:1)特征选择如何通过最大化节点纯度来确定最佳分割特征;2)停止分割的条件(如节点纯度100%、超过最大深度等)以避免过拟合。该内容展示了决策树如何通过分层决策规则实现有效分类。更多计算机相关知识可访问博客网站rn.berlinlian.cn。
2025-09-09 18:42:15
1066
原创 Decision Tree Model|决策树模型
本文介绍了决策树模型的基本概念和应用实例。决策树通过一系列条件判断对数据进行分类或回归预测,以猫分类为例,展示了决策树从根节点到叶节点的分类过程。文章还比较了四种基于相同特征集但结构不同的决策树,分析其差异原因(数据划分、特征重要性、随机性等),并指出评估决策树优劣的标准包括准确率、泛化能力和解释性。最后建议实践中可采用集成学习方法提升模型性能。更多计算机知识欢迎访问作者博客网站rn.berlinlian.cn。
2025-09-08 16:45:18
1646
原创 F1 Score|F1指标
本文介绍了机器学习中重要的F1评估指标及其应用。F1分数通过综合精确率(预测准确度)和召回率(覆盖全面性)来评估分类模型性能,采用调和平均数计算(公式为2PR/(P+R))。文章通过侦探破案的类比说明其意义,并详细分析了阈值调整对精确率和召回率的影响(两者呈反比关系)。最后通过三种算法对比,展示了F1分数比简单平均值更能有效评估模型性能的优势。更多计算机技术内容可访问博客rn.berlinlian.cn。
2025-09-07 12:49:35
1562
原创 Error metrics for skewed datasets|倾斜数据集的误差指标
本文探讨了机器学习在罕见疾病诊断中的应用挑战。传统准确率指标在数据不平衡(如仅0.5%患病率)时存在局限性,可能掩盖模型识别能力的不足。作者提出使用精确度(预测阳性中实际阳性的比例)和召回率(实际阳性中被正确识别的比例)作为更有效的评估指标。通过具体案例说明,即使模型准确率达99%,若仅预测"无病"也会导致严重漏诊。文章详细解释了这两个指标的计算方法和临床意义,强调在医疗诊断等关键领域需要超越传统指标,采用更全面的评估体系。更多技术内容可访问作者博客rn.berlinlian.cn。
2025-09-06 17:59:25
994
原创 Fairness, bias, and ethics|公平,偏见与伦理
本文探讨了机器学习中的公平性、偏见与伦理挑战。文章指出,机器学习应用可能放大数据中的固有偏见,导致招聘歧视、司法不公等问题。同时列举了深度伪造、有害内容传播等负面应用案例。为应对这些问题,作者建议组建多元化团队、进行行业调研、部署前审计以及制定缓解计划。文章强调解决这些技术伦理问题对构建公正数字社会的重要性。更多计算机相关内容可访问作者博客rn.berlinlian.cn。
2025-09-05 23:10:22
962
原创 Full cycle of a machine learning project|机器学习项目的完整周期
本文介绍了机器学习项目从开发到部署的完整周期,包含四个关键阶段:1)定义项目目标和范围;2)收集和清洗数据;3)训练模型并迭代优化;4)部署到生产环境。文章强调了各阶段间的反馈循环机制,并详细说明了模型部署流程,包括推理服务器、API调用等组件。同时指出MLOps团队在确保模型可靠性、可扩展性、日志记录和系统监控等方面的重要作用。更多计算机技术内容欢迎访问作者博客网站rn.berlinlian.cn交流讨论。
2025-09-04 21:59:53
1020
原创 Transfer Learning|迁移学习
这篇文章介绍了迁移学习的基本概念、过程和有效性。迁移学习通过将预训练模型的知识迁移到新任务上,能显著提高学习效率和性能。文章详细讲解了迁移学习的两个主要步骤:预训练模型的特征提取和新任务的微调,并分析了其有效性源于预训练模型已学习到通用特征。最后总结了迁移学习的应用方法:下载预训练参数后,在自己的数据上进行微调。更多计算机相关内容可访问作者博客网站rn.berlinlian.cn。
2025-09-03 16:50:35
1289
原创 Adding Data|添加数据
本文介绍了数据增强技术在机器学习中的应用,包括图像和语音数据的不同增强方法(如旋转、添加噪声等)。文章还探讨了数据合成技术及其在OCR中的应用,并对比了传统模型中心与数据中心两种AI开发方法。数据增强和合成能有效提升模型的泛化能力和鲁棒性。更多计算机技术内容,欢迎访问作者博客网站rn.berlinlian.cn进行交流。
2025-09-02 15:36:04
1201
原创 Error analysis|错误分析
文章介绍了机器学习中的错误分析技术,通过检查模型错误分类样本来识别错误类型(如药物、拼写错误、钓鱼邮件等),并据此改进模型。具体方法包括找出错误样本、手动检查分类、增加数据特征等。文章还以垃圾邮件分类器为例,提出了收集更多数据、开发邮件路由特征、处理同义词变体、检测拼写错误等改进措施。更多计算机知识可访问作者博客网站rn.berlinlian.cn。
2025-09-01 11:18:09
789
原创 Iterative loop of ML development|机器学习的迭代发展
这篇文章介绍了机器学习迭代开发过程,重点以垃圾邮件分类器为例说明构建流程。主要包括:1)机器学习开发循环(选择架构、训练模型、诊断分析);2)垃圾邮件分类实例分析(通过特征对比识别垃圾邮件特征);3)构建分类器的具体方法(监督学习、特征提取、向量化处理);4)优化分类器准确性的建议(增加数据、改进特征提取等)。更多计算机相关内容可访问作者博客网站rn.berlinlian.cn。
2025-08-31 15:29:32
925
原创 Bias / variance and neural networks|偏差/方差和神经网络
本文介绍了神经网络中的偏差-方差权衡及优化方法。第一部分阐述了简单模型(高偏差)和复杂模型(高方差)的特点,指出适中的模型复杂度能实现最佳平衡。第二部分详述了处理流程:先通过训练误差判断偏差,增加网络规模;再通过验证误差判断方差,增加数据量。第三部分比较了不同规模网络,说明合理使用L2正则化(如λ=0.01)能有效防止过拟合,使大网络表现更优。更多计算机知识欢迎访问博客rn.berlinlian.cn交流讨论。
2025-08-31 10:11:50
1042
原创 Learning Curve|学习曲线
本文介绍了机器学习中的学习曲线概念及其应用。学习曲线展示了随着训练数据增加,模型误差的变化趋势,包括训练误差和验证误差的关系。文章分析了三种典型情况:1)正常学习曲线中误差随数据量增加趋于稳定;2)高偏差(欠拟合)情况下误差居高不下;3)高方差(过拟合)时训练误差低但验证误差高。最后提供了调试学习算法的建议,如调整数据量、特征集、正则化参数λ等。更多计算机知识可访问作者博客网站rn.berlinlian.cn。
2025-08-30 13:13:31
1109
原创 Baseline|基线
本文介绍了基线的定义及其在模型评估中的重要性。基线是项目或系统的初始参考点,用于衡量后续变更。文章通过语音识别案例,展示了如何利用人类水平表现(10.6%)作为基准,对比训练误差(10.8%)和验证误差(14.8%)来诊断模型问题。详细分析了三种常见情况:高方差(过拟合)、高偏差(欠拟合)以及两者兼具的情况,并强调基线应基于客观基准或主观经验设定。欢迎访问作者博客rn.berlinlian.cn获取更多计算机知识。
2025-08-29 17:31:25
1142
原创 AutoDL算力云上传文件太慢了如何解决?
文章介绍了AutoDL算力云平台及其使用技巧。AutoDL提供高性能GPU租赁服务,具有性价比高、环境预置、按需计费等特点。针对文件上传慢的问题,作者分析了网络、文件大小、服务器负载等因素,并推荐使用网盘上传方案。具体以阿里云盘为例,详细说明了通过AutoPanel绑定网盘、授权和下载文件的步骤,实测下载速度可达7.5m/s以上。更多计算机相关内容可访问作者博客rn.berlinlian.cn。
2025-08-29 10:01:22
1414
2
原创 Regularization and bias / variance|正则化和偏差/方差
文章摘要:本文探讨了正则化参数λ对机器学习模型性能的影响。通过多项式回归示例,分析了不同λ值下模型的偏差-方差权衡:(1)大λ导致欠拟合(高偏差);(2)中等λ实现最佳平衡;(3)小λ引发过拟合(高方差)。文章详细介绍了选择最优λ的方法论,包括使用交叉验证误差最小化原则,并展示了训练误差与验证误差随λ变化的典型曲线。最后强调通过系统化调参实现模型复杂度与泛化能力的平衡。更多技术内容可访问作者博客rn.berlinlian.cn获取。
2025-08-28 11:46:13
884
原创 Diagnosing bias and variance|诊断偏差和方差
这篇文章通过房价预测案例,对比了不同多项式回归模型的拟合表现。线性模型(d=1)呈现高偏差欠拟合,训练误差和验证误差均高;二次多项式(d=2)达到理想平衡;高阶模型(d≥4)则出现高方差过拟合,训练误差极低但验证误差显著升高。文章还分析了误差曲线诊断方法:当训练误差和验证误差都高时为欠拟合,训练误差低而验证误差高则为过拟合。该分析为模型选择提供了直观判断依据。更多计算机技术文章可访问博客网站rn.berlinlian.cn。
2025-08-27 21:17:46
834
原创 Model selection and training/cross validation/test sets|模型选择和训练/交叉验证/测试集
本文介绍了机器学习中的模型选择方法,重点讨论了训练集、验证集和测试集的划分与作用。文章通过多项式模型示例说明模型复杂度与泛化误差的关系,强调验证集用于模型选择和超参数调优,而测试集仅用于最终评估。在神经网络架构选择部分,阐述了如何通过验证集评估不同结构的性能,最终选择最优模型并用独立测试集评估泛化能力。文章完整内容可访问博客网站rn.berlinlian.cn获取更多计算机相关知识。
2025-08-26 10:53:32
1272
原创 Evaluating a model|模型评估
文章摘要:本文详细介绍了机器学习模型评估的关键概念与方法。主要内容包括:1)模型评估的定义与重要性,通过准确率、召回率等指标衡量模型性能;2)机器学习诊断方法,分析算法有效性并指导优化方向;3)过拟合问题的具体案例解析;4)数据集划分标准及训练/测试流程,涵盖线性回归和分类问题的成本函数计算(含正则化项)。文章还提供了实际应用中的调试策略,如调整正则化参数、修改特征等。更多计算机相关内容可访问博客网站rn.berlinlian.cn。
2025-08-25 14:59:56
1007
原创 Adaptive Moment Estimation|Adam算法
本文介绍了Adam优化算法的原理及应用。Adam是一种高效的神经网络优化器,通过自适应调整学习率(结合动量和RMSprop优点)实现快速稳定收敛。文章用下山找低谷的比喻解释其原理,并展示了MNIST分类任务中的Keras实现示例(包含3个Dense层,使用0.001学习率)。欢迎访问作者博客rn.berlinlian.cn获取更多计算机技术内容。
2025-08-24 18:07:33
1146
原创 Multi-output Classification and Multi-label Classification|多输出分类和多标签分类
这篇文章介绍了机器学习中的多输出分类和多标签分类技术。多输出分类是指一个模型同时预测多个独立目标变量(如预测图片中的物体类型和场景),每个变量可能有不同类别。多标签分类则是指一个样本可同时属于多个类别(如图片同时标注"猫"和"狗"),输出为二元标签向量。二者关键区别在于:多标签是单个多标签任务,而多输出是多个独立分类任务。多标签可视为多输出的特例。文章通过神经网络结构图和示例详细说明了两种方法的实现方式及应用场景。更多计算机技术内容可访问作者博客网站。
2025-08-24 16:28:35
1049
原创 Neural Network with Softmax output|神经网络的Softmax输出
本文介绍了神经网络中Softmax输出层的含义及其在分类任务中的应用,详细解析了数学公式和网络结构设计。重点讨论了回归问题中的数值舍入误差问题,提出通过设置from_logits=True来避免Sigmoid/Softmax直接计算带来的数值不稳定问题。文章还对比了传统方法和改进方法在MNIST分类和逻辑回归任务中的实现差异,强调改进方法在数值精度上的优势。更多计算机相关知识可访问博客网站rn.berlinlian.cn。
2025-08-23 11:29:34
855
原创 Softmax Regression|Softmax回归
本文介绍了Softmax回归及其与逻辑回归的区别。Softmax回归是多分类模型,通过Softmax函数将特征线性组合转化为概率分布,各类别概率之和为1。与逻辑回归相比,前者适用于多分类(计算多个类别的得分并转换为概率),后者仅用于二分类。文章还对比了两者的损失函数:逻辑回归使用二元交叉熵,Softmax回归使用交叉熵损失。通过具体示例说明了Softmax回归如何选择概率最大的类别作为预测结果。更多计算机相关内容可访问博客网站rn.berlinlian.cn。
2025-08-22 12:42:32
1739
原创 Multi-class|多类
本文介绍了机器学习中的多类分类问题,通过手写数字识别等示例说明其特点。文章对比了多类与双类分类的区别,并列举了逻辑回归、SVM、决策树和神经网络等常用算法。更多计算机技术内容可访问作者博客网站rn.berlinlian.cn获取。
2025-08-21 08:41:35
883
原创 Activation Function|激活函数
摘要:本文介绍了神经网络中激活函数的作用与选择策略。激活函数(如Sigmoid、ReLU等)通过对神经元输入进行非线性变换,使网络能学习复杂模式。文章对比了不同激活函数的特性:Sigmoid适合概率输出但易梯度消失,ReLU更适用于隐藏层。重点阐明了输出层选择策略(二分类用Sigmoid,回归用Linear/ReLU)和隐藏层推荐使用ReLU的原因,并通过数学推导说明线性激活会导致网络退化为简单模型。最后提供了Keras实现示例。更多技术文章可访问博客rn.berlinlian.cn。
2025-08-20 10:02:23
1320
原创 TensorFlow implementation|TensorFlow实现
这篇文章介绍了使用TensorFlow构建和训练简单神经网络的过程。主要内容包括:1)构建一个包含3个全连接层的顺序模型,使用sigmoid激活函数和二元交叉熵损失函数;2)解释了模型训练的三大步骤(定义结构、损失函数、最小化成本);3)对比了逻辑回归和神经网络的具体实现方式。文章来自博客网站rn.berlinlian.cn,该网站提供更多计算机相关知识,欢迎访问留言。
2025-08-19 09:22:12
1024
原创 Matrix Multiplication|矩阵乘法
本文介绍了矩阵乘法的基本概念与实现方法,包括for循环和向量化两种方式。详细讲解了向量点积、矩阵乘法规则及其NumPy实现,并展示了全连接层的向量化代码示例。文章强调向量化计算的高效性,适合实际应用部署。更多计算机知识欢迎访问博客网站rn.berlinlian.cn。
2025-08-18 08:58:54
948
原创 Forward Propagation|前向传播
本文介绍了神经网络前向传播的基本原理与实现方法。文章首先通过汉堡制作类比形象解释前向传播过程:输入层接收数据,隐藏层加权处理并应用激活函数,输出层产生预测结果。随后详细解析了一个两层神经网络的具体实现,包括输入特征处理、各层计算公式(线性变换+激活函数)及NumPy实现的关键代码。最后展示了通用的dense函数实现单层计算和sequential函数构建多层模型的方法,涉及权重矩阵、偏置向量的定义及维度匹配等关键技术点。更多计算机知识可访问博客网站rn.berlinlian.cn。
2025-08-17 13:44:06
827
原创 TensorFlow|张量流
本文介绍了TensorFlow机器学习框架的基本概念,通过"乐高工厂"的比喻形象解释了张量、计算图和会话等核心概念。文章提供了两个TensorFlow神经网络推理示例,详细解析了输入数据、网络结构和预测逻辑,并对比了不同形状NumPy数组的差异。最后展示了神经网络激活向量的计算过程和输出形式。更多计算机技术内容请访问作者博客网站rn.berlinlian.cn。
2025-08-17 09:17:33
1208
原创 Neural Network Layer|神经网络的层
本文介绍了神经网络的基本概念和工作原理。文章首先解释了神经网络层的定义,将其类比为工厂流水线的加工工序。然后详细讲解了神经网络的计算过程,包括输入层、隐藏层和输出层的计算方式,特别强调了各层参数(w,b,a)的使用方法。通过手写数字识别的具体案例,展示了多层神经网络的结构和计算流程。最后对比了单层和多层神经网络的特点,指出多层网络在解决复杂问题上的优势。更多计算机相关内容可访问作者博客网站rn.berlinlian.cn。
2025-08-16 09:38:16
1367
原创 Neural Network|神经网络
本文介绍了神经网络的基本概念和应用。神经网络是一种模仿生物神经元结构的机器学习模型,通过多层神经元处理数据,广泛应用于图像识别、自然语言处理等领域。文章解析了神经网络的发展历程、神经元结构,并通过商品需求预测、人脸识别等实例说明其工作原理。神经网络通过输入层、隐藏层和输出层处理数据,不断优化参数以提高预测准确性。更多计算机相关知识,欢迎访问博客网站rn.berlinlian.cn交流讨论。
2025-08-15 08:59:51
1292
原创 Regularization |正则化
本文介绍了机器学习中正则化技术的原理与应用。正则化通过在损失函数中添加L1/L2惩罚项(如λ∑wj²)来限制模型参数,防止过拟合,提高泛化能力。详细讲解了正则化在线性回归和逻辑回归中的数学表达:包括损失函数构建、梯度下降更新规则(参数w需添加(λ/m)wj收缩项,偏置b不变)以及λ参数的选择策略(过大导致欠拟合,过小无法抑制过拟合)。特别指出虽然线性回归(MSE损失)与逻辑回归(交叉熵损失)的基础不同,但正则化后的梯度下降形式完全一致。文章还通过房价预测等示例,说明正则化如何促使模型学习更简洁通用的特征表达
2025-08-14 15:21:02
923
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人