目录
3.亲和性与反亲和性(Affinity and Anti-Affinity)
4.污点与容忍(Taint and Tolerations)
5.资源配额和限制(Resource Quotas and Limits)
6.优先级和抢占(Priority and Preemption)
Kubernetes(K8s)的资源调度策略是高度可配置和可扩展的,以适应不同类型的工作负载和集群配置。以下是Kubernetes中的关键资源调度策略和它们的实现机制
一、资源调度策略
1.默认调度器(Default Scheduler)
- 预选阶段(Predicates):这一阶段会过滤掉无法满足Pod需求的节点。例如,如果节点的CPU或内存资源不足,或者不满足Pod的节点选择器(Node Selector)要求,那么该节点会被排除。
- 优选阶段(Priorities):在预选阶段后,调度器会对剩余的节点进行评分,评分标准可能包括节点的资源空闲程度、Pod与节点的亲和性、节点上的Pod密度等。
- 绑定阶段(Binding):选择得分最高的节点,并将Pod绑定到该节点上。
2.自定义调度器(Custom Scheduler)
用户可以编写自己的调度器,以实现特定的调度策略。自定义调度器可以与默认调度器并行运行,或者通过配置替换默认调度器。
3.亲和性与反亲和性(Affinity and Anti-Affinity)
- 节点亲和性(Node Affinity):允许Pod指定对节点的偏好,例如,可以指定Pod只调度到具有特定标签的节点上。
- Pod亲和性与反亲和性(Pod Affinity and Anti-Affinity):这些规则允许Pod根据其他Pod的运行位置来选择调度位置,或者避免与某些Pod运行在同一个节点上。
4.污点与容忍(Taint and Tolerations)
- 污点(Taints):节点可以设置污点,以防止Pod调度到该节点上。例如,如果一个节点需要维护,可以给它添加一个污点。
- 容忍(Tolerations):Pod可以定义容忍,以允许它们被调度到有相应污点的节点上。
5.资源配额和限制(Resource Quotas and Limits)
- 资源配额(Resource Quotas):用于管理计算资源在命名空间级别的使用,可以限制Pod可以使用的资源总量。
- 资源限制(Resource Limits):Pod可以设置资源请求(requests)和限制(limits),以确保它们在运行时得到足够的资源,并且不会超过某个最大值。
6.优先级和抢占(Priority and Preemption)
- 优先级(Priority):Pod可以设置优先级,用于在资源不足时决定哪个Pod可以被抢占。
- 抢占(Preemption):当高优先级的Pod无法调度时,调度器可能会终止低优先级的Pod以释放资源。
7.多调度器(Multiple Schedulers)
在大型集群中,可能需要多个调度器来处理不同类型的工作负载。例如,一个调度器可能专门用于在线服务,而另一个可能用于批处理作业。
总之,Kubernetes的资源调度是集群管理中的关键组成部分,它们确保了Pod可以有效地利用集群资源,同时满足特定的业务需求和约束。通过提供丰富的调度选项,Kubernetes能够适应各种复杂的应用场景。
二、资源调度机制实现原理
Kubernetes的资源调度内部实现机制涉及到多个组件和步骤。以下是一些关键的内部实现机制:
1.调度器组件(Scheduler Component)
Kubernetes调度器是一个独立的组件,它负责将Pods分配到集群中的节点上。调度器不断 watch API server,一旦有新的Pod被创建并且尚未被调度,调度器就会尝试为它找到一个合适的节点。
2.调度队列(Scheduling Queue)
调度器维护了一个待调度Pod的队列。这个队列中的Pod按照一定的优先级排序,确保高优先级的Pod先被调度。
3.调度循环(Scheduling Cycle)
调度器为每个待调度的Pod执行一个调度循环,这个循环包括两个主要步骤:过滤(Filtering)和打分(Scoring)。
4.过滤阶段(Filtering Phase)
在这个阶段,调度器会运行一系列预选规则(Predicates)来过滤出不能运行该Pod的节点。这些规则包括但不限于:节点是否有足够的资源、节点是否满足Pod的亲和性要求、节点是否有Pod所容忍的污点等。
5.打分阶段(Scoring Phase)
过滤阶段完成后,调度器会对剩余的节点进行打分。打分基于一系列优先级函数(Priorities),这些函数考虑了各种因素,如节点的资源空闲程度、Pod与节点的亲和性、节点上的Pod密度等。
6.节点绑定(Node Binding)
一旦调度器选出了最佳节点,它就会将该Pod绑定到该节点上。这个过程是通过更新Pod的API对象来完成的,将Pod的`spec.nodeName`字段设置为选中的节点名。
7.Pod条件(Pod Conditions)
调度器会检查Pod的状态和条件,以确保Pod可以正常运行。例如,如果Pod依赖于一个ConfigMap或Secret,调度器会确保这些资源已经准备好。
8.抢占(Preemption)
如果一个高优先级的Pod无法调度,调度器可能会启动抢占逻辑,尝试删除一些低优先级的Pod来为高优先级的Pod腾出空间。
9.扩展性(Extensibility)
Kubernetes调度器允许通过插件(Plugins)来扩展其功能。这些插件可以在过滤阶段和打分阶段被调用,以实现自定义的调度逻辑。
10.事件和日志(Events and Logging)
调度器会生成事件和日志,这些信息对于调试和理解调度决策非常有用。
11.回退机制(Fallback Mechanism)
如果调度器在给定的时间内无法找到一个合适的节点,Pod可能会被放入一个待定状态,等待重新调度。
总之,上述Kubernetes调度器的内部实现机制是高度优化的,以确保能够快速、有效地将Pods调度到集群中的节点上。通过不断地迭代和改进,Kubernetes调度器能够适应不断变化的集群状态和复杂的用户需求。