Kubernetes资源调度策略及实现机制

目录

一、资源调度策略

1.默认调度器(Default Scheduler)

2.自定义调度器(Custom Scheduler)

3.亲和性与反亲和性(Affinity and Anti-Affinity)

4.污点与容忍(Taint and Tolerations)

5.资源配额和限制(Resource Quotas and Limits)

6.优先级和抢占(Priority and Preemption)

7.多调度器(Multiple Schedulers)

二、资源调度机制实现原理

1.调度器组件(Scheduler Component)

2.调度队列(Scheduling Queue)

3.调度循环(Scheduling Cycle)

4.过滤阶段(Filtering Phase)

5.打分阶段(Scoring Phase)

6.节点绑定(Node Binding)

7.Pod条件(Pod Conditions)

8.抢占(Preemption)

9.扩展性(Extensibility)

10.事件和日志(Events and Logging)

11.回退机制(Fallback Mechanism)


Kubernetes(K8s)的资源调度策略是高度可配置和可扩展的,以适应不同类型的工作负载和集群配置。以下是Kubernetes中的关键资源调度策略和它们的实现机制

一、资源调度策略

1.默认调度器(Default Scheduler)

  • 预选阶段(Predicates):这一阶段会过滤掉无法满足Pod需求的节点。例如,如果节点的CPU或内存资源不足,或者不满足Pod的节点选择器(Node Selector)要求,那么该节点会被排除。
  • 优选阶段(Priorities):在预选阶段后,调度器会对剩余的节点进行评分,评分标准可能包括节点的资源空闲程度、Pod与节点的亲和性、节点上的Pod密度等。
  • 绑定阶段(Binding):选择得分最高的节点,并将Pod绑定到该节点上。

2.自定义调度器(Custom Scheduler)

用户可以编写自己的调度器,以实现特定的调度策略。自定义调度器可以与默认调度器并行运行,或者通过配置替换默认调度器。

3.亲和性与反亲和性(Affinity and Anti-Affinity)

  • 节点亲和性(Node Affinity):允许Pod指定对节点的偏好,例如,可以指定Pod只调度到具有特定标签的节点上。
  • Pod亲和性与反亲和性(Pod Affinity and Anti-Affinity):这些规则允许Pod根据其他Pod的运行位置来选择调度位置,或者避免与某些Pod运行在同一个节点上。

4.污点与容忍(Taint and Tolerations)

  • 污点(Taints):节点可以设置污点,以防止Pod调度到该节点上。例如,如果一个节点需要维护,可以给它添加一个污点。
  • 容忍(Tolerations):Pod可以定义容忍,以允许它们被调度到有相应污点的节点上。

5.资源配额和限制(Resource Quotas and Limits)

  • 资源配额(Resource Quotas):用于管理计算资源在命名空间级别的使用,可以限制Pod可以使用的资源总量。
  • 资源限制(Resource Limits):Pod可以设置资源请求(requests)和限制(limits),以确保它们在运行时得到足够的资源,并且不会超过某个最大值。

6.优先级和抢占(Priority and Preemption)

  • 优先级(Priority):Pod可以设置优先级,用于在资源不足时决定哪个Pod可以被抢占。
  • 抢占(Preemption):当高优先级的Pod无法调度时,调度器可能会终止低优先级的Pod以释放资源。

7.多调度器(Multiple Schedulers)

在大型集群中,可能需要多个调度器来处理不同类型的工作负载。例如,一个调度器可能专门用于在线服务,而另一个可能用于批处理作业。

总之,Kubernetes的资源调度是集群管理中的关键组成部分,它们确保了Pod可以有效地利用集群资源,同时满足特定的业务需求和约束。通过提供丰富的调度选项,Kubernetes能够适应各种复杂的应用场景。

二、资源调度机制实现原理

Kubernetes的资源调度内部实现机制涉及到多个组件和步骤。以下是一些关键的内部实现机制:

1.调度器组件(Scheduler Component)

Kubernetes调度器是一个独立的组件,它负责将Pods分配到集群中的节点上。调度器不断 watch API server,一旦有新的Pod被创建并且尚未被调度,调度器就会尝试为它找到一个合适的节点。

2.调度队列(Scheduling Queue)

调度器维护了一个待调度Pod的队列。这个队列中的Pod按照一定的优先级排序,确保高优先级的Pod先被调度。

3.调度循环(Scheduling Cycle)

调度器为每个待调度的Pod执行一个调度循环,这个循环包括两个主要步骤:过滤(Filtering)和打分(Scoring)。

4.过滤阶段(Filtering Phase)

在这个阶段,调度器会运行一系列预选规则(Predicates)来过滤出不能运行该Pod的节点。这些规则包括但不限于:节点是否有足够的资源、节点是否满足Pod的亲和性要求、节点是否有Pod所容忍的污点等。

5.打分阶段(Scoring Phase)

过滤阶段完成后,调度器会对剩余的节点进行打分。打分基于一系列优先级函数(Priorities),这些函数考虑了各种因素,如节点的资源空闲程度、Pod与节点的亲和性、节点上的Pod密度等。

6.节点绑定(Node Binding)

一旦调度器选出了最佳节点,它就会将该Pod绑定到该节点上。这个过程是通过更新Pod的API对象来完成的,将Pod的`spec.nodeName`字段设置为选中的节点名。

7.Pod条件(Pod Conditions)

调度器会检查Pod的状态和条件,以确保Pod可以正常运行。例如,如果Pod依赖于一个ConfigMap或Secret,调度器会确保这些资源已经准备好。

8.抢占(Preemption)

如果一个高优先级的Pod无法调度,调度器可能会启动抢占逻辑,尝试删除一些低优先级的Pod来为高优先级的Pod腾出空间。

9.扩展性(Extensibility)

Kubernetes调度器允许通过插件(Plugins)来扩展其功能。这些插件可以在过滤阶段和打分阶段被调用,以实现自定义的调度逻辑。

10.事件和日志(Events and Logging)

调度器会生成事件和日志,这些信息对于调试和理解调度决策非常有用。

11.回退机制(Fallback Mechanism)

如果调度器在给定的时间内无法找到一个合适的节点,Pod可能会被放入一个待定状态,等待重新调度。

总之,上述Kubernetes调度器的内部实现机制是高度优化的,以确保能够快速、有效地将Pods调度到集群中的节点上。通过不断地迭代和改进,Kubernetes调度器能够适应不断变化的集群状态和复杂的用户需求。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值