1511: 残缺的棋盘 coj

本文探讨了一道经典的算法题目——求解棋盘上骑士从一点到另一点的最短路径。提供了两种解决方案:一种是通过模拟方法进行直接计算;另一种是采用广度优先搜索(BFS)算法实现。文章详细解释了两种方法的具体实现过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >



Description

Input

输入包含不超过10000 组数据。每组数据包含6个整数r1, c1, r2, c2, r3, c3 (1<=r1, c1, r2, c2, r3, c3<=8). 三个格子A, B, C保证各不相同。

Output

对于每组数据,输出测试点编号和最少步数。

Sample Input

1 1 8 7 5 6
1 1 3 3 2 2

Sample Output

Case 1: 7
Case 2: 3

HINT

Source

湖南省第十届大学生计算机程序设计竞赛

本来这题应该用bfs解决,但自己bfs还不熟练就使用了模拟的方法

大致思路分为三点在一条斜率为1的线上和不在一条斜率为1的线上,具体方法实现在代码中

#include<iostream>
using namespace std;
bool check(int x1,int y1,int x2,int y2,int a,int b)
{
 if(((x1-x2)==(y1-y2)&&(x1-a)==(y1-b))||((x1-x2)==(y2-y1)&&(x1-a)==(b-y1))) return true;
 else return false;
}
bool check1(int x1,int y1,int x2,int y2,int a,int b)
{
 if((a<min(x1,x2))||a>max(x1,x2)||b<min(y1,y2)||b>max(y1,y2)) return false;
 else return true;
}
main()
{
 int x1,y1,x2,y2,a,b,qun=1;
 while(~scanf("%d%d%d%d%d%d",&x1,&y1,&x2,&y2,&a,&b))
 {
  int x,y;
  if(x2>x1)x=x2-x1;
  else x=x1-x2;
  if(y2>y1)y=y2-y1;
  else y=y1-y2;
  if(check(x1,y1,x2,y2,a,b)&&check1(x1,y1,x2,y2,a,b))
  printf("Case %d: %d\n",qun++,max(x,y)+1);
  else printf("Case %d: %d\n",qun++,max(x,y));
  
 }
}

bfs做法

#include <stdio.h>
#include <queue>
#include <algorithm>
using namespace std;
#include <string.h>
#include <stdlib.h>
int map[205][205];
int vis[205][205];
int dir[8][2]={{1,0},{-1,0},{0,1},{0,-1},{1,-1},{1,1},{-1,1},{-1,-1}};//周围的八个方向跳
int s1,e1,x2,y2;
struct node
{
 int x,y;
 int step;
}
;
bool check(int x,int y)  //检查是否符合条件
{
 if(x>8 || y>8 ||x<1 ||y<1 )
  return 1;
 if(x==x2 &&y==y2)
  return 1;
 if(vis[x][y])
  return 1;
 return 0;
}
int bfs(int x,int y)
{
 int i;
 queue<node>q;
 node st,ed;
 st.x=x;
 st.y=y;
 st.step=0;
 q.push(st);
 while(!q.empty())
 {
  st=q.front();
  q.pop();
  if(st.x==s1 &&st.y==e1)
   return st.step;  // 返回最小步数
  for(i=0;i<8;i++)
  {
   ed.x=st.x+dir[i][0];
   ed.y=st.y+dir[i][1];
   if(check(ed.x,ed.y))
    continue;
   ed.step=st.step+1;
   vis[ed.x][ed.y]=1;
   q.push(ed);
  }
 }
}
int main()
{
 int s,e,i,j;
 int Case=0;
 while(scanf("%d%d%d%d%d%d",&s,&e,&s1,&e1,&x2,&y2)!=EOF)
 {
  memset(vis,0,sizeof(vis));
  vis[s][e]=1;
  int ans=bfs(s,e);
        printf("Case %d: ",++Case);
  printf("%d\n",ans);
 }
 return 0;
}


内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
《芋道开发指南文档-2023-10-27更新》是针对软件开发者和IT专业人士的一份详尽的资源集合,旨在提供最新的开发实践、范例代码和最佳策略。这份2023年10月27日更新的文档集,包含了丰富的模板和素材,帮助开发者在日常工作中提高效率,保证项目的顺利进行。 让我们深入探讨这份文档的可能内容。"芋道"可能是一个开源项目或一个专业的技术社区,其开发指南涵盖了多个方面,例如: 1. **编程语言指南**:可能包括Java、Python、JavaScript、C++等主流语言的编码规范、最佳实践以及常见问题的解决方案。 2. **框架与库的应用**:可能会讲解React、Vue、Angular等前端框架,以及Django、Spring Boot等后端框架的使用技巧和常见应用场景。 3. **数据库管理**:涵盖了SQL语言的基本操作,数据库设计原则,以及如何高效使用MySQL、PostgreSQL、MongoDB等数据库系统。 4. **版本控制**:详细介绍了Git的工作流程,分支管理策略,以及与其他开发工具(如Visual Studio Code、IntelliJ IDEA)的集成。 5. **持续集成与持续部署(CI/CD)**:包括Jenkins、Travis CI、GitHub Actions等工具的配置和使用,以实现自动化测试和部署。 6. **云服务与容器化**:可能涉及AWS、Azure、Google Cloud Platform等云计算平台的使用,以及Docker和Kubernetes的容器化部署实践。 7. **API设计与测试**:讲解RESTful API的设计原则,Swagger的使用,以及Postman等工具进行API测试的方法。 8. **安全性与隐私保护**:涵盖OAuth、JWT认证机制,HTTPS安全通信,以及防止SQL注入、
该是一个在 Kaggle 上发布的数据集,专注于 2024 年出现的漏洞(CVE)信息。以下是关于该数据集的详细介绍:该数据集收集了 2024 年记录在案的各类漏洞信息,涵盖了漏洞的利用方式(Exploits)、通用漏洞评分系统(CVSS)评分以及受影响的操作系统(OS)。通过整合这些信息,研究人员和安全专家可以全面了解每个漏洞的潜在威胁、影响范围以及可能的攻击途径。数据主要来源于权威的漏洞信息平台,如美国国家漏洞数据库(NVD)等。这些数据经过整理和筛选后被纳入数据集,确保了信息的准确性和可靠性。数据集特点:全面性:涵盖了多种操作系统(如 Windows、Linux、Android 等)的漏洞信息,反映了不同平台的安全状况。实用性:CVSS 评分提供了漏洞严重程度的量化指标,帮助用户快速评估漏洞的优先级。同时,漏洞利用信息(Exploits)为安全研究人员提供了攻击者可能的攻击手段,有助于提前制定防御策略。时效性:专注于 2024 年的漏洞数据,反映了当前网络安全领域面临的新挑战和新趋势。该数据集可用于多种研究和实践场景: 安全研究:研究人员可以利用该数据集分析漏洞的分布规律、攻击趋势以及不同操作系统之间的安全差异,为网络安全防护提供理论支持。 机器学习与数据分析:数据集中的结构化信息适合用于机器学习模型的训练,例如预测漏洞的 CVSS 评分、识别潜在的高危漏洞等。 企业安全评估:企业安全团队可以参考该数据集中的漏洞信息,结合自身系统的实际情况,进行安全评估和漏洞修复计划的制定。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值