考研数学——高数:不定积分

一、换元定积分法

①第一类换元法

定理1

若        \int f(u)du = F(u)+C

则        \int f[\varphi (x)]\varphi '(x)dx = \int F[\varphi(x)] + C

这个方法也叫凑微分法,实际运用中是将被积函数的一部分拿到d的后面(相当于对部分求积分)然后将d之后的部分看成一个整体,再对原函数积分,起到化简的效果

例题(求下列不定积分)

(1)\int xe^{x^2}dx        (2)\int (1+3x)^{100}dx

(3)\int \frac{dx}{a^2+x^2}           (4)\int \frac{dx}{\sqrt{a^2-x^2}}        (5)\int \frac{x}{\sqrt{1+x^2}}dx

(6)\int \frac{dx}{\sqrt{1-x^2-2x}}     (7)\int tanxdx      (8)\int cos^2xdx        (9)\int cos^3xdx

(10)\int \frac{dx}{x\sqrt{1+lnx}}      (11)\int \frac{dx}{\sqrt{x}(1+x)}    (12)\int \frac{arcsin\sqrt{x}}{\sqrt{x}(1-x)}dx

②第二类换元法

定理2

设单调可导的函数 x = \varphi (t) ,且 \varphi '(t)\neq 0

\int f[\varphi (t)]\varphi '(t)dt = F(t)+C

则        \int f(x)dx = \int f[\varphi (t)]\varphi '(t)dt - F(t)+C = F[\varphi ^{-1}(x)]+C

原则是换成关于t的积分比较容易求出来

例题(求下列不定积分)
(1)\int \sqrt{a^2-x^2}dx(a>0)        (2)\int \frac{dx}{\sqrt{a^2+x^2}}(a>0)

(3)\int \frac{dx}{\sqrt{x^2-a^2}}(a>0)

二、分部积分法

由积分是导数的逆向过程可以想到,两个函数乘积的导数根据导数运算法则展开

(设 u(x),v(x) 有连续一阶导数)

(uv)' = u'v+uv'

==>uv' = (uv)' -u'v

==> \int uv'dx = \int (uv)'dx - \int u'vdx

==>\int udv = uv - \int vdu

这种办法一般适用于两类不同函数相乘的积分(优先考虑指数函数和三角函数,一般不考虑反三角和对数函数)

例题(求下列不定积分)

(1)\int xe^xdx        (2)\int xsinxdx        (3)\int xlnxdx

(4)\int xarctanxdx

  • 10
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值