AcWing.786. 第k个数.【c++】

一、题目

给定一个长度为 n 的整数数列,以及一个整数 kk,请用快速选择算法求出数列从小到大排序后的第 k 个数。

输入格式

第一行包含两个整数 n 和 k。

第二行包含 n 个整数(所有整数均在 1∼10^9 范围内),表示整数数列。

输出格式

输出一个整数,表示数列的第 kk小数。

数据范围

1≤n≤100000
1≤k≤n

输入样例:

5 3
2 4 1 5 3

输出样例:

3

二、解答

快排之后,输出第k个数,即数组中第k-1个数,但是快排的复杂度为nlogn。

#include <iostream>
using namespace std;

const int N = 100010;
int n,k;

void quick_sort(int q[],int l,int r)
{
     if(l >= r) return;
    int x = q[r + l >>1],i = l - 1,j = r + 1;
    while(i < j)
    {
        do i++;while(q[i] < x);
        do j--;while(q[j] > x);
        if (i < j) swap(q[i],q[j]);
    }
    quick_sort(q,l,j);
    quick_sort(q,j+1,r);
}

int main()
{
    int q[N];
    scanf("%d %d",&n,&k);
    for(int i = 0;i < n; i++) scanf("%d",&q[i]);
    
    quick_sort(q,0,n - 1);
    
    printf("%d",q[k-1]);
    return 0;
}

我们可以选择快速选择算法,复杂度为n。

#include <iostream>
using namespace std;

const int N = 100010;
int n,k;
int q[N];
int quick_sort(int l,int r,int k)
{
     if(l == r) return q[l];
    int x = q[r + l >>1],i = l - 1,j = r + 1;
    while(i < j)
    {
        do i++;while(q[i] < x);
        do j--;while(q[j] > x);
        if (i < j) swap(q[i],q[j]);
    }
    int sl = j - l + 1;
    if(k <= sl) return quick_sort(l,j,k);
    return quick_sort(j+1,r,k - sl);
}

int main()
{
    cin >> n >> k;
    for(int i = 0; i < n; i++) cin >> q[i];
    cout << quick_sort(0,n - 1, k) <<endl;
    return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目链接:https://www.acwing.com/problem/content/4948/ 题目描述: 给定一棵有 $n$ 个结点的树,结点从 $1$ 到 $n$ 编号,每个结点都有一个权值 $w_i$,现在有 $m$ 次操作,每次操作是将树中编号为 $x$ 的结点的权值加上 $y$,然后询问一些节点是否为叶子节点,如果是输出 $1$,否则输出 $0$。 输入格式: 第一行包含两个整数 $n$ 和 $m$。 第二行包含 $n$ 个整数,其中第 $i$ 个整数表示结点 $i$ 的初始权值 $w_i$。 接下来 $n-1$ 行,每行包含两个整数 $a$ 和 $b$,表示点 $a$ 和点 $b$ 之间有一条无向边。 接下来 $m$ 行,每行描述一次操作,格式为三个整数 $t,x,y$。其中 $t$ 表示操作类型,$t=1$ 时表示将编号为 $x$ 的结点的权值加上 $y$,$t=2$ 时表示询问编号为 $x$ 的结点是否为叶子节点。 输出格式: 对于每个操作 $t=2$,输出一个结果,表示询问的结点是否为叶子节点。 数据范围: $1≤n,m≤10^5$, $1≤w_i,y≤10^9$ 样例: 输入: 5 5 1 2 3 4 5 1 2 1 3 3 4 3 5 2 3 0 1 3 100 2 3 0 1 1 100 2 3 0 输出: 1 0 0 算法1: 暴力dfs,每次都重新遍历整棵树,时间复杂度 $O(nm)$ 时间复杂度: 最坏情况下,每次操作都要遍历整棵树,时间复杂度 $O(nm)$,无法通过此题。 算法2: 用一个 vector<int> sons[n+5] 来存储每个点的所有子节点,这样可以用 $O(n)$ 预处理出每个点的度数 $deg_i$,如果 $deg_i=0$,则 $i$ 是叶子节点,否则不是。 对于每个操作,只需要更新叶子节点关系的变化就可以了。如果某个节点的度数从 $1$ 变成 $0$,则该节点变成了叶子节点;如果某个节点的度数从 $0$ 变成 $1$,则该节点不再是叶子节点。 时间复杂度: 每次操作的时间复杂度是 $O(1)$,总时间复杂度 $O(m)$,可以通过此题。 C++ 代码: (算法2)

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值