求最大公约数(GCD)

求两个数的最大公约数,相信很多人都遇见过这样的题目,那我们到底怎么样做才能更好的表现出自己的实力呢?以及与别人的不同呢?既然这样我们就要好好的来研究下,这个最大公约数是神马东东?

比如  42和30的最大的公约数,就是分别求出42和30的所有的约数,其中两个数的公约数中相同公约数最大的那个。相信这个大家都很清楚,毕竟这个是小学的时候学习的知识。

根据上面的知识,我们知道42和30的最大公约数是6.

解法一:

早在公元前300年左右,欧几里得就在他的著作中《几何原本》中给出了高效的解---辗转相除法。原理如下:我们假设f(x,y)来表示x,y的最大公约数,取k=x/y,b=x%y;则  x=ky+b; 如果一个数能整除x,y那么这个数一定能整除y和b,能整除y和b的数,也一定能整除x和y,也就是说x和y的最大公约数与y和b的最大公约数是相同的。即:f(x,y)=f(y,x%y)(x>=y>0),依次类推,直到其中一个为0,剩下的那就是需要求的最大公约数,即当某个数为0时,它可以被任何数整除,0除以任何数等于0,所以另外一个非0的数就可以将其自身作为最大公约数,这个数既可以整除自身,也可以整除0,即为最大公约数。

例如:f(42,30)=f(30,12)=f(12,6)=f(6,0)=6

算法实现:

[cpp]  view plain copy
  1. int Gcd(int x,int y)  
  2. {  
  3.     if(x<y)//此处可以不做此判断,你知道为什么吗?  举一例即可知
  4.     {  
  5.         return Gcd(y,x);  
  6.     }  
  7.     if(y==0)  
  8.     {  
  9.         return x;  
  10.     }  
  11.     else  
  12.     {  
  13.         return Gcd(y,x%y);  
  14.     }  
  15. }  

解法二:

我们看到上面解法一,用到了求模运算,这个对于大整数来说是一个很大的时间的开销,将成为该算法的瓶颈。我们改变下思路,此为辗转相减法。我们知道能被x和y整除的数一定能被x-y整除。即:f(x,y)=f(x-y,y)(x>y),这样的话,我们就不用求模运算了。转化为减法。

f(42,30)=f(12,30)=f(30,12)=f(18,12)=f(6,12)=f(12,6)=f(6,6)=f(0,6)=f(6,0)=6

算法实现如下:

[cpp]  view plain copy
  1. int Gcd(int x,int y)  
  2. {  
  3.     if(x<y)//此处必须做此判断,你知道为什么吗? 举一例即可知 
  4.     {  
  5.         return Gcd(y,x);  
  6.     }  
  7.     if(y==0)  
  8.     {  
  9.         return x;  
  10.     }  
  11.     else  
  12.     {  
  13.         return Gcd(x-y,y);  
  14.     }  
  15. }  

以上两种做法,基本上可以对付你在面试,笔试时候的情况了,还有其他很多的做法,在这里就不一一介绍了!


改为非递归算法很简单,用一个循环,解法一的循环终止条件是余数为0,解法二的循环终止条件是差为0,循环体中将后数代替前数即可。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值