题意:
一棵n个结点的树,每个结点都有颜色,定义两点之间的路径长度为路径上出现的不同颜色数目,求树上所有路径的长度和。
思路:
此题以贡献来考虑计数,先假设每一种颜色在树中每一条路径里都贡献了,那么就有答案总贡献N*(N-1)/2*cnt(cnt表示出现的颜色种类数)然后再依次剔除颜色i所不在的路径记录在另一变量ans。剔除过程通过树形DP完成。
剔除过程如下,每次我们遍历到某个根u时去它的子树v中找所有的颜色相同且处在最高位置的点,用sizes[v]减去以这些点为根的子树大小即可获得一块连通块的大小,这个连通块内任意两点的路径根u的颜色是无法贡献的,由此ans += tmp*(tmp-1)/2
定义sum[i]表示遍历到目前点为止,与颜色i相同且处在最高位置其子树和。维护这个数据很简单,初始时初始化0,当遍历完了所有子树后得到一个变量为各子树中连通块大小的和allson,这些连通块分散且不包含根u的颜色,但是把节点u加入这些连通块里他们就会连起来而且包含根u的颜色,将这一大连通块的大小维护进sum[i]就可以实现sum[i]计数的目的了。
C++代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int maxn = 200010;
const int maxm = 400010;
int n,tol,head[maxn];
struct edge
{
int to,next;
}es[maxm];
void addedge( int u , int v )
{
es[tol].to = v;
es[tol].next = head[u];
head[u] = tol++;
}
int color[maxn],vis[maxn];
LL ans,sum[maxn],sizes[maxn];
void dfs( int u , int f )
{
sizes[u] = 1;
LL allson = 0;
for ( int i=head[u] ; i!=-1 ; i=es[i].next )
{
int v = es[i].to;
if ( v!=f )
{
LL last = sum[color[u]];
dfs( v , u );
sizes[u] += sizes[v];
LL add = sum[color[u]]-last;
ans += ( sizes[v]-add )*( sizes[v]-add-1 )/2;
allson += sizes[v]-add;
}
}
sum[color[u]] += allson+1;
}
int main()
{
for( int cas=1 ; scanf ( "%d" , &n )==1 ; cas++ )
{
memset ( vis , 0 , sizeof(vis) );
memset ( sum , 0 , sizeof(sum) );
LL cnt = 0,N = n;
for ( int i=1 ; i<=n ; i++ )
{
scanf ( "%d" , &color[i] );
if ( !vis[color[i]] )cnt++;
vis[color[i]] = 1;
}
tol = 0;
memset ( head , -1 , sizeof(head) );
for ( int i=1 ; i< n ; i++ )
{
int u,v;
scanf ( "%d%d" , &u , &v );
addedge ( u , v );
addedge ( v , u );
}
printf ( "Case #%d: " , cas );
if ( cnt==1 )
{
printf ( "%lld\n" , N*(N-1)/2 );
continue;
}
ans = 0;
dfs ( 1 , 0 );
for ( int i=1 ; i<=n ; i++ )
{
if ( !vis[i] ) continue;
ans += ( N-sum[i] )*( N-sum[i]-1 )/2;
}
printf ( "%lld\n" , N*(N-1)/2*cnt-ans );
}
return 0;
}