数据库中转化为3NF的几个分解算法

【例】关系模型R<U,F>,U={A,B,C,D,E},F={A→BC,ABD→CE,E→D}

 

  • 算法一:将关系R转化3NF的保持函数依赖的分解

第一步:首先计算出F的最小依赖集(算法详见最小函数依赖),得到F'={A→BC,AD→E,E→D}。

第二步:观察U中是否有属性不在F'中的出现,如果有,则这个个属性组成一对关系R,并在原来的U中删除这些属性。而例子中U中的属性都出现在F中,则可以跳过这一步。

第三步:对F'中的函数依赖,把左边的相同分为一组,一组中出现的所有属性为一个关系。如F={A→B,A→C,……},左边都为A的分为一组,出项的所有属性组为一个关系R{A,B,C,……}。例题中左边都不相同,所以一个函数依赖组为一个关系得到转化为3NF的保持依赖分解R1{A,B,C},R2{A,D,E},R3{E,D}

  • 算法二:将关系R转化3NF的既有无损连接性又保持函数依赖的分解

第一步:先将R转化3NF的保持函数依赖的分解,由算法一得出R1{A,B,C},R2{A,D,E},R3{E,D}。

第二步:求出F的候选码(算法相见候选码算法)得出候选码X为AD和AE。

第三步:将候选码单独组成关系得R4{A,D}和R5{A,E},然后与保持函数依赖后的分解取并集。得R1{A,B,C},R2{A,D,E},R3{E,D},R4{A,D},R5{A,E}。

第四步:观察新组成的分解模式中,是否存在包含关系,有则去掉被包含的。如R3{E,D},R4{A,D},R5{A,E}都包含于R2{A,D,E},则删去,最终得到转化3NF的既有无损连接性又保持函数依赖的分解R1{A,B,C},R2{A,D,E}。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值