自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

Thinkgamer博客

《推荐系统开发实战》作者,「搜索与推荐Wiki」公号负责人,CyanScikit科技创始人

原创 你想要的【技术服务】和【商务合作】都在这里了,点击查看详情!

合作范围 Web全栈 数据服务 :-: :-: 论文算法实现 大数据服务 :-: :-: 跟拍摄影 广告接入 全网唯一ID:Thinkgamer,左侧”关于我“关注微信公众号”数据与算法联盟“,可在公众号添加我的微信,本人涉猎范围包括:Python,机器学习,Web开发,大数...

2020-03-18 19:18:29 3016

原创 你要听听我和处女作《推荐系统开发实战》的故事吗

结缘编辑我不知道是怎样的巧合,让吴老师(此书的编辑)在茫茫人海之中找到了我,我也不知道是谁给我的勇气让我答应去写作这本书。只知道我头脑发热之后的无数个夜晚和周末都被写作占据了,我期待的诗和远方也被我藏在角落里,直到初版书稿完成后才悄然拿起,带着我的小毛驴游历四方。我想大概也许是因为CSDN博客的多年耕耘才给了我这个机会,大概也许是因为我的工作经历给了我写这本书的勇气,不管怎样,我都怀抱着感恩...

2019-08-12 09:06:12 2814 9

原创 关于推荐算法工程师大家比较关注的几个问题

今天在《推荐系统开发实战》的读者群里聊天,在探讨技术问题的时候发现也有朋友对一些非技术的问题比较感兴趣,这里进行总结和分享,希望能够帮助到看这篇文章的人。欢迎加我的微信进行技术交流,非技术的人生思考问题也可以进行探讨。我的微信号如下图以下问题,随机排序,不分先后!Q、推荐算法工程师的工资待遇怎么样A:这个问题真的是很直接呀,当然可以理解,毕竟我们工作就是为了赚钱,为了生活。推荐算法工程师和算法工程师的待遇基本差不多,不过不同地方、不同级别的推荐算法工程师待遇肯定是不一样,比如一线的北上广深

2020-07-24 12:00:41 81

翻译 Kaggle宝典|使用Python进行全面的数据探索

算法工程师的日常工作中基础最多的便是数据,但是大多数的算法工程师在使用数据过程中,最缺少的还是对数据的整体把控和分析,更多靠的是业务经验。但是严谨的算法工程师在建模之前是需要对数据进行探索和分析的,以便于在建模过程中能给更快的做出更优的模型。生活中最苦难的事情就是了解自己,建模过程中最苦难的事是了解数据!了解数据是一件非常困难的事情,且非常耗时,因此从事数据科学很容易忽略前期的数据了解,而直接对数据进行应用。本文是一篇非完整的翻译文(在个人理解的基础上进行翻译,个人水平有限,如果文章有误,欢迎在评论.

2020-07-11 11:30:37 210

原创 传统机器学习和前沿深度学习推荐模型演化关系介绍
原力计划

本文来自王喆老师《深度学习推荐系统》一书,如果有一定的推荐系统基础的话,建议读一读,当然如果只是初学者的话还是建议从基础的开始学起,比如《推荐系统开发实战》。传统机器学习推荐模型演化简单讲,传统推荐模型的发展主要由以下几部分组成协同过滤算法族即上图中蓝色部分,协同过滤是推荐系统的首选模型,从物品相似度和用户相似角度出发,衍生出了ItemCF和UserCF两种算法。为了使协同过滤衍生出矩阵分解模型(Matrix Factorization,MF),并发展出矩阵分解的各分支模型。逻辑回归模型族.

2020-06-30 08:16:41 346

原创 独孤九剑:算法模型训练的一般流程
原力计划

这篇文章主要分享一下模型训练的一般流程,目的是让大家明白做一个算法模型过程中会涉及的流程和数据特征在算法模型中的重要性。作为一名算法工程师训练模型可谓是家常便饭,不管是做推荐中的召回模型、排序模型还是其他领域的分类模型等,都应该有一个规范化的流程,这样在做模型的过程中也会更加清晰,当然也不一定完全遵循这个流程,只是说基本过程应该是一致的。1、总诀式——定义问题What,How,Why。首先要弄清楚自己要干什么,然后调研相关的技术确定怎么解决问题,最后反思自己为什么要用这个方案解决这个问题,有没有更好的

2020-06-29 07:27:36 346

原创 CTR预估模型中的正负样本定义、选择和比例控制
原力计划

目前推荐系统中给用户进行推荐大部分都是基于CTR预估来做的,CTR预估中很重要的一环便是正负样本的选择,那么不同业务场景下我们如何定义正负样本、如何控制正负样本的比例、正负样本选择有哪些技巧?虽然这些只是模型训练中的一环,但却也扮演着重要的角色。这篇文章简单聊一下上边提到的问题,如何你对这有什么想法和意见,欢迎在评论区留言,一起沟通。分析业务场景不同业务场景下对应的kpi也是不同的,那么模型训练的目标也是不一致的,比如kpi是点击率,那么模型训练的目的就是增加推荐的准确性,提升用户的准确率;如果k.

2020-06-19 10:02:54 528

原创 用户网络行为画像知识点纪要

用户画像在推荐系统中扮演着重要的角色,这篇文章主要是阅读《用户网络行为画像》一书的读书摘要,该书较老,感觉更加适合产品经理或者不懂推荐的人看,如果读者本身就是一个推荐从业者的话,只需要看书的前半部分,对用户画像有个本质的理解即可,后半部分可忽略。可以在京东或者当当上购买纸质版图书,也可以购买京东上的电子版,如果想要获取免费的电子版,加我的微信号,备注【book】即可获取用户描述分为三种情况用户画像(User Portrait),更倾向于对同一类用户进行不同维度的刻画用户角色(User .

2020-06-10 17:15:17 276

原创 基于tensorflow实现稀疏自编码和在推荐中的应用

稀疏自编码自编码器(Auto-Encoder)顾名思义,即可以利用自身的高阶特征编码自己。自编码器也是一种神经网络,他的输入和输出是一致的,他借助稀疏编码的思想,目标是使用稀疏的一些高阶特征重新组合来重构自己。因此他的特征十分明显:期望输入与输出一致希望使用高阶特征来重构自己,而不只是复制像素点自编码器的输入节点和输出节点的数量是一致的,但如果只是单纯的逐个复制输入节点则没有意义,像前面提到的,自编码器通常希望使用少量稀疏的高维特征来重构输入,所以加入几种限制:(1)中间隐含层节点的数量。

2020-05-28 20:45:45 491 2

原创 基于DNN的推荐算法
原力计划

本文为《推荐系统与深度学习》第六章的复习笔记,只记录了一些要点,希望能够快速的进行复习,如果发现哪一个点不明白的话,可以自行展开学习或者加小编微信进行沟通。深度学习在推荐中发挥的作用:能够直接从内容中提取特征,表征能力强容易对噪声数据进行处理,抗噪能力强可以使用循环神经网络对动态或者序列数据进行建模可以更加准确的学习user和item的特征基于DNN的推荐算法推荐系统和通用搜索排序问题共有的一大挑战为同时具备记忆能力和泛化能力。记忆能力可以解释为学习那些经常共同出现的特征,发现历史.

2020-05-27 23:19:36 444

原创 晓得嘛?混合推荐系统速览和技巧锦囊
原力计划

本文为《推荐系统与深度学习》第五章的复习笔记,只记录了一些要点,希望能够快速的进行复习,如果发现哪一个点不明白的话,可以自行展开学习或者加小编微信进行技术交流。5.1 什么是混合推荐系统混合推荐系统的含义海量数据推荐系统中通常存在三部分:在线系统(Online)直接与用户进行交互,具有高性能、高可用的特性,通常利用缓存系统,处理热门请求的重复计算近在线系统(Nearline)接受在线系统的请求,执行比较复杂的推荐算法,缓存在线系统的结果,并及时收集用户的反馈,快速调整结果离.

2020-05-20 14:50:09 582

原创 算法工程师的数学基础|信息论
原力计划

【算法工程师的数学基础】系列将会从线性代数、微积分、数值优化、概率论、信息论五个方面进行介绍,感兴趣的欢迎关注【搜索与推荐Wiki】公众号,获得最新文章。《算法工程师的数学基础》已更新:1、算法工程师的数学基础|线性代数中的向量和向量空间2、算法工程师的数学基础|线性代数中的矩阵3、算法工程师的数学基础|微积分之导数相关介绍4、算法工程师的数学基础|微积分之微分相关介绍5、算法工程师的数学基础|微积分之积分相关介绍6、算法工程师的数学基础|数学优化类型和优化算法7、算法工程师的数学基础|概

2020-05-17 23:37:34 341

原创 虽然简单但确不能不会的推荐算法重点回顾
原力计划

本文为《推荐系统与深度学习》第四章的复习笔记,只记录了一些要点,希望能够快速的进行复习,如果发现哪一个点不明白的话,可以自行展开学习。4.1 基于内容的推荐算法基于内容的推荐算法步骤:特征(内容)提取用户偏好计算内容召回(召回用户偏好的top K)物品排序(可以根据top K中其他用户打分平均值最高的top N推荐给用户,好处是可以考虑其他用户的意见)优点:物品没有冷启动问题(因为物品的内容特征不依赖于用户数据),推荐出的物品也不会存在过于热门的问题能够捕获到用户的特殊偏好原理.

2020-05-11 17:10:05 325

原创 论文|AGREE-基于注意力机制的群组推荐,含代码(Attentive Group Recommendation)
原力计划

这篇文章主要分享的论文是2018年被CCF收录的一篇论文:Attentive Group Recommendation(基于注意力机制的群组推荐),第一作者是湖南大学的曹达老师,二作是论文Neural Collaborative Filtering的作者何老师。当然也会结合小编的工作来进行一些补充说明,写的不好,欢迎拍砖!

2020-04-24 11:56:26 656

原创 算法工程师的数学基础|概率论
原力计划

【算法工程师的数学基础】系列将会从线性代数、微积分、数值优化、概率论、信息论五个方面进行介绍,感兴趣的欢迎关注【搜索与推荐Wiki】公众号,获得最新文章。《算法工程师的数学基础》已更新:1、算法工程师的数学基础|线性代数中的向量和向量空间1.2、算法工程师的数学基础|线性代数中的向量内积和外积概念及几何意义2、算法工程师的数学基础|线性代数中的矩阵3、算法工程师的数学基础|微积分之导数...

2020-04-17 10:44:47 341

原创 论文|组推荐系统及其应用研究
原力计划

这篇文章主要是普及一下群组推荐系统,众所周知,推荐系统已经应用十分广泛,群组推荐的应用不仅老用户上发挥了极大的作用,在新用户的冷启动上也发挥了很大的作用。由于后续会有一篇文章介绍结合深度学习的群组推荐,所以这里先借用该篇论文,借花献佛,介绍一下群组推荐系统和其应用。本文中所涉及的内容算是比较老了,但在不同公司或者推荐系统的不同阶段仍然有应用,其中群组推荐的思想更是经久不衰,所以本文比较适合以“...

2020-04-13 21:50:16 460

原创 算法工程师的数学基础|线性代数中的向量内积和外积概念及几何意义
原力计划

【算法工程师的数学基础】系列将会从线性代数、微积分、数值优化、概率论、信息论五个方面进行介绍,感兴趣的欢迎关注【搜索与推荐Wiki】公众号,获得最新文章。《算法工程师的数学基础》已更新:1.1、算法工程师的数学基础|线性代数中的向量和向量空间1.2、算法工程师的数学基础|线性代数中的向量内积和外积概念及几何意义2、算法工程师的数学基础|线性代数中的矩阵3、算法工程师的数学基础|微积分之...

2020-04-07 13:43:32 556

原创 算法工程师的数学基础|数学优化类型和优化算法

【算法工程师的数学基础】系列将会从线性代数、微积分、数值优化、概率论、信息论五个方面进行介绍,感兴趣的欢迎关注【搜索与推荐Wiki】公众号,获得最新文章。《算法工程师的数学基础》已更新:1、算法工程师的数学基础|线性代数中的向量和向量空间2、算法工程师的数学基础|线性代数中的矩阵3、算法工程师的数学基础|微积分之导数相关介绍4、算法工程师的数学基础|微积分之微分相关介绍5、算法工程师...

2020-04-01 11:27:44 1134

原创 算法工程师的数学基础|微积分之积分相关介绍

【算法工程师的数学基础】系列将会从线性代数、微积分、数值优化、概率论、信息论五个方面进行介绍,感兴趣的欢迎关注【搜索与推荐Wiki】公众号,获得最新文章。《算法工程师的数学基础》已更新:1、算法工程师的数学基础|线性代数中的向量和向量空间2、算法工程师的数学基础|线性代数中的矩阵3、算法工程师的数学基础|微积分之导数相关介绍4、算法工程师的数学基础|微积分之微分相关介绍5、算法工程师...

2020-03-27 10:14:18 268

原创 论文|被“玩烂”了的协同过滤加上神经网络怎么搞?

相信熟悉推荐系统的同学对于协同过滤(Collaborative Filtering)已经熟悉的不能再熟悉了,我也相信很多人心里在想“这么简单的协同,都2020年了,谁还用呀”。俗话说得好,人不可貌相,海水不可斗量!CF作为最早的推荐算法,基于CF的改进在学术界和工业界应用的十分广泛,就在之前介绍的一篇论文里,介绍了腾讯实时ItemCF的实现和应用,所以说可千万别小瞧协同过滤了。本篇论文主要介绍...

2020-03-23 14:34:58 871

原创 LTR|怎么理解基于机器学习“四大支柱”划分的学习排序方法
原力计划

Learning to rank(LTR,L2R)也叫排序学习,泛指机器学习中任何用户排序的技术,是指一类监督学习(Supervised Learning)排序算法。 LTR被应用在很多领域,比如信息检索(Information Retrieval)、推荐系统(Recommend System)、搜索引擎(Search Engine)。LTR框架一般来讲,根据机器学习的“四大支柱”,LTR分为...

2020-03-21 14:02:44 705 2

原创 2019全球人工智能技术峰会PDF资料拿走不谢

2019 全球人工智能技术峰会PDF资料免费分享,资料内容涵盖各个方面,全部都是一线互联网公司的产业实践。工业实践「百度」源于产业实践的开源深度学习平台飞浆(PaddlePaddle)「易观」如何建设大数据中台(从0到1建设大数据中台)「华为」云边协同,重新定义AI机器学习「网易云」AI算法在音乐推荐中的应用「VIPKID」在线教育行业中视频理解的应用「美团点评」美团外卖...

2020-03-18 19:19:08 3900

原创 怎么才能够坚持做一件事并且把它做好?

好久没写过碎言碎语的文章了,一直都是更新技术文章,那么今天就换换口味,聊一聊近况和想法。自从回北京之后,就一直在家办公,十几平方的卧室内支撑着北漂的身体和灵魂,我相信这不是我一个人的情况,而是无数在异国他乡追求自己理想的人的缩影。来北京工作的人无非就两种想法,第一:追求梦想,实现人生价值,可能的话定居北京,成为一个新的北京人,第二:赚钱,满足自己和家庭的生活、物质和一些所谓的虚荣心的需求。这两...

2020-03-16 09:05:11 4740 7

原创 算法工程师的数学基础|微积分之微分相关介绍

【算法工程师的数学基础】系列将会从线性代数、微积分、数值优化、概率论、信息论五个方面进行介绍,感兴趣的欢迎关注【搜索与推荐Wiki】公众号,获得最新文章。《算法工程师的数学基础》已更新:1、算法工程师的数学基础|线性代数中的向量和向量空间2、算法工程师的数学基础|线性代数中的矩阵3、算法工程师的数学基础|微积分之导数相关介绍4、算法工程师的数学基础|微积分之微分相关介绍接下来将会有...

2020-03-12 17:46:28 413 1

原创 论文|看腾讯如何玩转实时推荐-TencentRec
原力计划

今天要分享的一篇论文是有关腾讯如何利用协同过滤(Collaborative Filtering)、基于内容和图进行实时推荐的,我们都知道协同过滤是传统的推荐算法,但在实际应用中取得的效果却很好,因此在各大公司应用的也非常广泛。协同过滤的改进经常出现了各种硕士研究生的毕业论文中,那都属于学术界的研究和实现,且是离线的,在工业界的CF算法实现和如何实时基于CF进行推荐的资料却是少之又少,接下来的内容...

2020-03-10 10:29:57 481 3

原创 算法工程师的数学基础|微积分之导数相关介绍

【算法工程师的数学基础】系列将会从线性代数、微积分、数值优化、概率论、信息论五个方面进行介绍,感兴趣的欢迎关注【搜索与推荐Wiki】公众号,获得最新文章。《算法工程师的数学基础》已更新:1、算法工程师的数学基础|线性代数中的向量和向量空间2、算法工程师的数学基础|线性代数中的矩阵3、算法工程师的数学基础|微积分之导数相关介绍导数(derivative)是微积分学中重要的基础概念。本篇...

2020-03-10 10:25:19 342

原创 算法工程师的数学基础|线性代数中的矩阵

【算法工程师的数学基础】系列将会从线性代数、微积分、数值优化、概率论、信息论五个方面进行介绍,感兴趣的欢迎关注【搜索与推荐Wiki】公众号,获得最新文章。《算法工程师的数学基础》已更新:1、算法工程师的数学基础|线性代数中的向量和向量空间2、算法工程师的数学基础|线性代数中的矩阵线性代数主要包含向量、向量空间(或称线性空间)以及向量的线性变换和有限维的线性方程组。本篇文章主要介绍线性代...

2020-03-05 23:07:10 968 2

原创 值得收藏 |近100页的《常见的五种神经网络》汇总电子书

首先在这里给各位读者分享一个好消息,我的处女作《推荐系统开发实战》已经被两所高校纳为教学用书了,当编辑把这个消息告诉我的时候,说实话内心十分的激动和意外!目前这本书在京东和当当都有满100-50的活动,感兴趣的朋友欢迎购买阅读,目前该书还没有电子版,所以只能阅读纸质书了!当当购买链接:http://product.dangdang.com/27913798.html京东购买链接:https...

2020-03-02 15:42:18 386

原创 算法工程师的数学基础|线性代数中的向量和向量空间

新的系列文章开启了,本系列文章主要是定位于【算法工程师的数学基础】,将会从线性代数、微积分、数值优化、概率论、信息论五个方面进行介绍,感兴趣的欢迎关注【搜索与推荐Wiki】公众号,获得最新文章。《算法工程师的数学基础》已更新:1、算法工程师的数学基础|线性代数中的向量和向量空间线性代数主要包含向量、向量空间(或称线性空间)以及向量的线性变换和有限维的线性方程组。本篇文章主要介绍线性代数部...

2020-02-28 02:48:00 565

原创 值得收藏 |140+页文章推荐系统系列文章汇总

这里简单说下为什么要写系列的文章,虽然系列的文章很不吃香,阅读率也是惨淡的一笔,可能很多人更爱看的是「标题党」、「八卦文」、「科普文」这样的。但我觉得系列文和技术文是真的很考验作者的,首先要面临惨淡的阅读和稀里哗啦的数据统计,其次要面临的是自己内心的崩溃。但好处是坚持下来,自己写完一个系列,自己的知识体系也就更加完善了,而不是零零散散的没有重点和边际。所以后续的文章大多数还是会以系列文呈现出来,...

2020-01-18 22:54:57 3230 2

原创 浅谈企业如何正确的引入和发展AI算法

本文主要分为上下两部分,(上)部分主要介绍一下企业内部什么时候需要引入AI技术(这里的AI技术泛指机器学习、深度学习、NLP、视觉、语音、推荐等),(下)部分主要介绍一下在引入这些AI技术之后的一些情况和企业的技术方向发展。(上)部分数据积累当一个产品是以内容为主的时候,必然会积累大量的数据,在这个数据为王的时代,有了数据当前要进行分析、挖掘,然后产出更多的商业价值。这个时候必然需要引...

2020-01-04 16:22:08 3773

原创 2019年终总结-埋下的种子是讲给自己的故事

窗外有漆黑的夜,心中是明亮的灯。其实每个人的内心都有一颗属于自己的灯塔,不渡远方的邮轮,不引迷路的灵魂。不知不觉的,时间又过了一年,年初兴高采烈给自己2019立flag的情景还在眼前晃着,一不小心这一年就要彻底沦为过往了。回想过去这一年,许多人匆匆到来,也有很多人悄悄离去,有过好友相聚的狂欢,也有无数捧着孤独无处存放的夜晚,有过收获的满足,也有在崩溃边缘挣扎的心酸,有过山野隔绝的轻松,也有追逐...

2020-01-01 23:17:30 3590 3

原创 常见的五种神经网络(5)-生成对抗网络(下)之GAN、DCGAN、W-GAN

在上一篇文章中介绍了生成模型的基本结构、功能和变分自动编码器,在本篇文章中主要介绍一下生成对抗网络(Generative Adversaarial Networks,GAN)KL散度、JS散度、Wassertein距离KL散度KL散度又称相对熵,信息散度,信息增益。KL散度是两个概率分布P和Q差别的非对称性的度量。在经典境况下,P表示数据的真实分布,Q表示数据的理论分布,模型分布。DK...

2019-12-31 15:54:24 4580 1

原创 常见的五种神经网络(5)-生成对抗网络(上)之变分自动编码器

概率生成模型简称生成模型(Generative Model),是概率统计和机器学习中的一类重要模型,指一系列用于随机生成可观测数据的模型。生成模型的思路是根据可观测的样本学习一个参数化的模型pθ(x)p_{\theta}(x)pθ​(x)来近似未知分布pr(x)p_r(x)pr​(x),使得生成的样本和真实的样本尽可能的相似。深度生成模型就是利用深层神经网络可以近似任意函数的能力来建模一个复杂的...

2019-12-29 22:33:48 4008

原创 论文|LinUCB论文的思想解读、场景应用与痛点说明

文章目录概述Disjoint LinUCBHybrid LinUCB评估算法实验说明实验位置数据选择特征选择特征降维实验结论注意点LinUCB 的重点场景应用本篇文章主要介绍一下雅虎在2012年发表的论文 【A Contextual-Bandit Approach to Personalized News Article Recommendation】,同时由于最近在做用户留存方面的工作,也涉...

2019-12-23 20:48:47 10221

原创 常见的五种神经网络(4)-深度信念网络(下)篇之深度信念网络的原理解读、参数学习

该系列的其他文章:常见的五种神经网络(1)-前馈神经网络常见的五种神经网络(2)-卷积神经网络常见的五种神经网络(3)-循环神经网络(上篇)常见的五种神经网络(3)-循环神经网络(中篇)常见的五种神经网络(3)-循环神经网络(下篇)常见的五种神经网络(4)-深度信念网络(上篇)常见的五种神经网络(4)-深度信念网络(下篇)常见的五种神经网络(5)-生成对抗网络在上一篇文章中介...

2019-12-07 18:02:07 4176

原创 Django3.0和Python3.7连接Mysql报:Error loading MySQLdb module. Did you install mysqlclient?

环境说明Python 3.7.3Django 3.0安装:pip3 install -U Django文档:https://docs.djangoproject.com/zh-hans/3.0/contents/项目说明创建项目django-admin startproject mysite 配置MysqlDATABASES = { 'default': {...

2019-12-04 15:45:02 2585

原创 Spark使用Libsvm格式数据构造LabeledPoint格错误:requirement failed:Index 2287 out of bounds for vector of size 27

背景使用libsvm格式的数据构造LabeledPoint格式,例如我的libsvm格式数据如下(索引下标最大值为,3000):790718 1:1 2:1 4:1 5:1 6:1 7:1 9:1 11:1 13:1 16:1 19:1 21:1 28:1 31:1 43:1 64:1 65:1 140:1 164:1 184:1 296:1 463:1 481:1 642:1 813:1 1...

2019-11-29 10:29:22 931

原创 NLP实战之基于TFIDF的文本相似度计算

TFIDF算法介绍TF-IDF(Term Frequency–InverseDocument Frequency)是一种用于资讯检索与文本挖掘的常用加权技术。TF-IDF的主要思想是:如果某个词或短语在一篇文章中出现的频率TF高,并且在其他文章中很少出现,则认为此词或者短语具有很好的类别区分能力,适合用来分类。TF-IDF实际是TF*IDF,其中TF(Term Frequency)表示词条tt...

2019-11-27 20:14:01 1531

原创 常见的五种神经网络(4)-深度信念网络(上)篇之玻尔兹曼机和受限玻尔兹曼机

引言常见的五种神经网络系列第三篇,主要介绍深度信念网络。内容分为上下两篇进行介绍,本文主要是深度信念网络(上)篇,主要介绍以下内容:背景玻尔兹曼机受限玻尔兹曼机该系列的其他文章:常见的五种神经网络(1)-前馈神经网络常见的五种神经网络(2)-卷积神经网络常见的五种神经网络(3)-循环神经网络(上篇)常见的五种神经网络(3)-循环神经网络(中篇)常见的五种神经网络(3)-循...

2019-11-26 14:32:04 4144 3

提示
确定要删除当前文章?
取消 删除