数论学习笔记1

1.整除(|)

1.定义
如果b=a*q1+c(a,b,q1 ∈ \in Z \mathbb{Z} Z)且c=0,则b整除a,计做a|b
2.性质
(1)如果a|b,b|c,则a|c
(2)a|b且a|c,等价于a|(bx+cy) (x,y ∈ \in Z \mathbb{Z} Z)
(3)设m ≠ 0 \neq0 =0,则a|b等价于am|bm
(4)设x ∈ \in Z \mathbb{Z} Z,y ∈ \in Z \mathbb{Z} Z满足ax+by=1,且a|n,b|n,那么(ab)|n
证明:
令a ∗ * s=n,b ∗ * t=n (s,t ∈ \in Z \mathbb{Z} Z)
∵ \because ax+by=1
∴ \therefore x b \frac{x}{b} bx+ y a \frac{y}{a} ay= 1 a b \frac{1}{ab} ab1
∵ \because (ab)|n ∈ \in Z \mathbb{Z} Z等价 n a b \frac{n}{ab} abn ∈ \in Z \mathbb{Z} Z=n ∗ * 1 a b \frac{1}{ab} ab1 ∈ \in Z \mathbb{Z} Z
∴ \therefore 1 a b \frac{1}{ab} ab1 ∗ * n= x n b \frac{xn}{b} bxn+ y n a \frac{yn}{a} ayn= b t x b \frac{btx}{b} bbtx+ a s y a \frac{asy}{a} aasy=tx+sy’=
∵ \because t,x,y,s ∈ \in Z \mathbb{Z} Z
∴ \therefore 得证

(5)若b=q*d+c,那么d|b的充要条件是d|c

2.模(mod)

1.定义
如果b=a*q1+c(a,b,q1 ∈ \in Z \mathbb{Z} Z)且c ≠ 0 \neq0 =0,c=b mod a也计做b%a
2.性质
(1)如果a%b=c,d ≠ 0 \neq0 =0,则有(a ∗ * d)%(b ∗ * d)=c ∗ * d(分配律)
证明:
令a=b ∗ * s+c
∴ \therefore a ∗ * d=b ∗ * s ∗ * d+c ∗ * d

=(b ∗ * d) ∗ * s+c ∗ * d
b ∗ * d → \rightarrow 除数
c ∗ * s → \rightarrow 余数
∴ \therefore 得证

(2)如果a%b=c,d|a,d|b,则 a d \frac{a}{d} da mod b d \frac{b}{d} db= c d \frac{c}{d} dc
证明:
设a=b ∗ * s+c
∴ \therefore b d \frac{b}{d} db ∗ * s+ c d \frac{c}{d} dc= a d \frac{a}{d} da
∵ \because d|a,d|b
∴ \therefore b d \frac{b}{d} db, a d \frac{a}{d} da ∈ \in Z \mathbb{Z} Z
∴ \therefore c d \frac{c}{d} dc ∈ \in Z \mathbb{Z} Z
∴ \therefore 得证

(3) a b \frac{a}{b} ba% c c c= a m o d ( b ∗ c ) b \frac{a mod (b*c)}{b} bamod(bc)

3.同余

1.定义
设m ∈ \in Z \mathbb{Z} Z,若满足m|(a-b),则称a与b对模m同余
记为a ≡ \equiv b(mod m)或a ≡ \equiv b(m)
证明:
q 1 q_1 q1, q 2 q_2 q2 ∈ \in Z \mathbb{Z} Z
则a=m* q 1 q_1 q1+r
b=m* q 2 q_2 q2+r
∴ \therefore a-b=m*( q 1 q_1 q1- q 2 q_2 q2)
∴ \therefore m|(a-b)
∴ \therefore 得证

逆:
∵ \because a-b=( q 1 q_1 q1- q 2 q_2 q2)*m
∴ \therefore a- q 1 q_1 q1*m=b- q 2 q_2 q2*m
∴ \therefore a= q 1 q_1 q1+r
∴ \therefore b= q 2 q_2 q2+r
其中:
q 1 q_1 q1*m → \rightarrow
a- q 1 q_1 q1 → \rightarrow 余数
2.性质
(1)自反性
a ≡ \equiv a(mod m)
(2)对称性
if a ≡ \equiv b(mod m) b ≡ \equiv a(mod m)
(3)传递性
if a ≡ \equiv b(mod m),b ≡ \equiv c(mod m)
then a ≡ \equiv c(mod m)
证明:
m|a-b m|b-c
m|(a+c)-(b+c)
=m|a-b
(4)同加性
若a ≡ \equiv b(mod p),则a+c ≡ \equiv b+c(mod p)
(5)同减性
若a ≡ \equiv b(mod p),则a-c ≡ \equiv b-c(mod p)
(6)同乘性
若a ≡ \equiv b(mod p),则a ∗ * c ≡ \equiv b ∗ * c(mod p)
(7)同除性
若a ≡ \equiv b(mod p),且c|a,c|b,(c,p)=1,则 a c \frac{a}{c} ca ≡ \equiv b c \frac{b}{c} cb(mod p)
证明:
设a=m ∗ * q 1 q_1 q1+r
b=m ∗ * q 2 q_2 q2+r
a c \frac{a}{c} ca= m q 1 c \frac{mq_1}{c} cmq1+r, b c \frac{b}{c} cb= m q 2 c \frac{mq_2}{c} cmq2+r
a c \frac{a}{c} ca- b c \frac{b}{c} cb= m q 1 c \frac{mq_1}{c} cmq1- m q 2 c \frac{mq_2}{c} cmq2=m ∗ * q 1 − q 2 c \frac{q_1-q_2}{c} cq1q2
∵ \because (m,c)=1
∴ \therefore m|m ∗ * q 1 − 1 2 c \frac{q_1-1_2}{c} cq112
∴ \therefore 得证
(8)同幂性
若a ≡ \equiv b(mod p),c>0,则 a c a^c ac ≡ \equiv b c b^c bc(mod p)
证明:
a c a^c ac- b c b^c bc=(a-b)( a c − 1 a^{c-1} ac1+ a c − 2 a^{c-2} ac2b+…a b c − 2 b^{c-2} bc2+ b c − 1 b^{c-1} bc1)
∵ \because m|a-b
∴ \therefore m| a c a^c ac- b c b^c bc
(9)若a%p=x,a%q=x,且p,q互质,则a%(p ∗ * q)=x
证明:
∵ \because a%p=a%q=x
∴ \therefore a-x= k 1 k_1 k1*p= k 2 k_2 k2*q
即a-x即是p,q的公倍数
∵ \because (p,q)=1
∴ \therefore [p,q]=p ∗ * q
∴ \therefore ∃ \exist [p,q] → \rightarrow k 3 k_3 k3使a-x= k 3 k_3 k3
∴ \therefore 得证

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值