子矩阵最大累加和——算法笔记

这篇博客探讨了如何解决子矩阵最大累加和的问题。通过从第一行开始逐行累加并寻找最大子数组和,然后从第二行开始同样操作,并与历史最大值比较更新,最终达到O(N^3)的时间复杂度解决方案。
摘要由CSDN通过智能技术生成

在这里插入图片描述

假定只有一行,那就和求最大和子数组一样
如果限定两行,可以把两行按列求和,同上
所以我们以第一行当做起点,依次累加后面的每一行后,都求一个最大子数组和
以第二行作为起点,依次累加后面的每一行后,都求一个最大子数组和
每次求出来的和与历史最大值比较,如果更大,则更新
N^3时间复杂度

#include <iostream>
#include <cstring>

using namespace std;

#define MAX 10

int sums[MAX];//按列求和

int maxSum(int matrix[MAX][MAX], int M, int N)		//M行 N列 
{
   
	int findByDp(int *arr,int len);
    int beginRow = 0;//以它为起始行
    int ma
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值