Manacher算法C++实现

manacher算法也称“马拉车算法”,是用来解决求字符串的最长回文串的算法。
对于求最长回文串有三种算法:
1.暴力枚举法 优点:简单易写
缺点:复杂度过高(o(n^3))

string s;
 cin >> s;
 int maxlength =1,start=0;
 for (int i = 0; i < s.size(); i++)
 {
  for (int j = i + 1; j < s.size(); j++)
  {
   int temp1, temp2;
   for (temp1 = i, temp2 = j; temp1 < temp2; temp1++, temp2--)
   {
    if (s[temp1] != temp2)
    {
     break;
    }
   }
   if (temp1 >= temp2 && j - 1 + 1 > maxlength)
   {
    maxlength = j - 1 + 1;
    start = i;
   }
  }
 }
 cout << s.substr(start, maxlength);

2.由中间展开,分为奇偶数两种情况

string longestPalindrome(string s)
{
	if(s.empty())
	{
		return " ";
	}
	int imax=0;
	int ileft=0,iright=0;
	for(int i=0;i<s.size();i++)
	{
		if(i-1>=)
		{
			if(s[i]==s[i-1])
			{
				int ltmp=i-2,rtmpi+1;
				while(ltmp>=0&&rtmp<s.size())
				{
					if(s[ltmp]!=s[rtmp])
					{
						break;
					}
					--ltmp;
					++rtmp;
				}
				if(imax<rtmp-ltmp-1)
				 {
					 imax= rtmp-ltmp-1;
					 ileft = ltmp+1;
 					 iright = rtmp-1;
				 }
			}
			int ltmp=i-1,rtmp=i+1
			while(ltmp>=0 && rtmp<s.size())
			{
			if(s[ltmp] != s[rtmp])
			{
			 break;
			}
			--ltmp;
			++rtmp;
			}
			if(imax < rtmp-ltmp-1)
			{
			 imax = rtmp-ltmp-1;
			 ileft = ltmp+1;
			 iright = rtmp-1;
			}
		}
	}
	return s.substr(ileft,iright+1-ileft);
}

优点:降低复杂度
缺点:要分奇偶性
未充分利用前面查找工作的结果
没有思考回文字符本身的特性:

3.Manacher算法

#include <iostream>
using namespace std;

int min(int a,int b)//选取两个数值之间最小值
{
    if (a > b)return b;
    else
    {
        return a;
    }
}

string Manancher(string s)
{
    if (s.size() < 2) //首先筛查出字符<1个的字符串
    {
        return s;
    }

    //预处理,将所有字符串变为奇数个
    string t = "$";//字符串开头先增加一个特殊字符,防止越界
    for (int i = 0; i < s.size(); i++)
    {
        t += "#";
        t+=s[i];//在每一个字符之间增加一个#
    }
    t += "#@";//在字符串尾部增加一个特殊字符,表示结束(其实也可以不加,因为C++中string字符串尾部自动添加'/0',表示结束)
    cout << t << endl;

    int n = t.size();//求出新数组的长度

    int* p = new int[n];//p数组,用来求每一个字符的回文串的半径

    int id = 0, mx = 0;//用来检索并求p[i]  延伸到最右端位置的那个回文子串的中心点位置,mx是该回文串能延伸到的最右端的位置

    int maxlength = 0;//回文串最长半径

    int index = 0;// 最长回文子串的中心位置索引

    for (int i = 1; i < n - 1; i++)//从有效字符开始遍历,求出p[i],并求出maxlength
    {
        p[i] = mx > i ? min(p[2 * id - i], mx - i) : 1;
        
        //左右两边延伸,拓展右边界
        while (t[i + p[i]] == t[i - p[i]])
        {
            p[i]++;
        }

        // 如果回文子串的右边界超过了mx,则需要更新mx和id的值
        if (mx < p[i] + i)
        {
            mx = p[i] + i;
            id = i;
        }

        // 如果回文子串的长度大于maxLength,则更新maxLength和index的值
        if (maxlength < p[i]-1 )
        {
            maxlength = p[i]-1 ;
            index = i;
        }
    }

    int start = (index - maxlength) / 2;
    return s.substr(start, maxlength);
}
int main()
{
    string S;
    cin >> S;
    cout << Manancher(S);
    return 0;
}

代码都上机运行通过测试,可放心食用~

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

GXM.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值