电商平台推荐系统需求分析文档

一、业务背景与目标
背景
当前电商平台面临三大核心矛盾:

顾客需求矛盾:海量商品与个性化需求不匹配,用户难以快速找到目标商品。
商家运营矛盾:商品同质化严重,中小商家缺乏精准触达目标用户的能力。
平台管理矛盾:推荐算法黑盒化导致运营策略调整困难,缺乏可解释性和可控性。


目标
构建以LLM(大语言模型)为核心的智能推荐系统,实现:

顾客侧:提升商品匹配精度,降低决策成本
商家侧:增强商品曝光精准度,提高转化效率
平台侧:建立可解释、可干预的推荐治理体系

二、核心用户需求分析

·1.顾客需求

需求类别具体需求描述技术实现路径
精准推荐- 根据历史行为(浏览/收藏/购买)推荐相关商品用户行为建模 + 协同过滤算法
- 支持跨品类推荐(如买手机后推荐配套耳机)知识图谱关联挖掘
内容理解- 自动生成商品核心卖点摘要(替代冗长描述)LLM文本摘要 + 用户画像适配
- 智能提炼商品评价关键信息(优缺点/适用场景)情感分析 + Aspect-based摘要生成
决策辅助- 推荐商品对比功能(参数/价格/评价多维对比)结构化特征提取 + 对比式推荐
- 推荐理由可视化(如"因您浏览过运动鞋,推荐透气袜")因果推理 + 可解释推荐模型

2.商家需求

类别需求具体需求描述技术实现路径
精准曝光- 将商品推送给高转化潜力用户Lookalike算法 + 用户价值分层模型
- 动态调整商品展示策略(如促销期优先展示)实时竞价机制 + 策略引擎
运营分析- 推荐效果归因分析(曝光量/点击率/转化率关联)因果推断模型 + 漏斗分析工具
- 商品竞争力诊断(与同类竞品的推荐表现对比)竞品对比分析 + 特征重要性排序
内容优化- 自动生成优化版商品标题/描述LLM生成 + A/B测试框架
- 根据用户反馈动态调整商品关键词强化学习 + 语义理解模型

三、功能需求分解

1.核心功能模块

模块功能点用户价值
智能推荐引擎- 多路召回(协同过滤/语义检索/热点推荐)提升推荐覆盖率与新颖性
- 基于LLM的精排模型(DeepSeek API集成)实现复杂用户意图理解
- RLHF反馈机制(点击/加购/停留时长多信号融合)动态优化推荐策略
AIGC内容生成- 个性化商品描述生成(适配用户画像)提高商品信息传达效率
- 智能评价摘要(提取优缺点/适用场景)降低用户决策成本
策略管理平台- 可视化策略配置(流量分配/过滤规则)增强平台运营灵活性
- AB测试框架(支持多版本推荐策略并行实验)科学验证算法效果

2.关键交互场景

顾客端典型场景:

用户搜索"户外帐篷" → 系统执行:  
1. 召回阶段:基于关键词匹配商品 + 协同过滤关联商品(防潮垫/睡袋)  
2. 精排阶段:LLM分析用户历史行为(常买轻量化装备) → 优先推荐超轻帐篷  
3. 内容生成:自动突出"重量仅1.2kg"卖点 + 生成评价摘要"90%用户认可防水性能" 

商家端典型场景:

新商品上架后 → 系统执行:  
1. 自动生成优化版标题:"2024新款自动速开帐篷(3秒搭建/防水5000mm)"  
2. 冷启动推荐:通过知识图谱关联露营爱好者用户群进行定向曝光  
3. 效果追踪:实时显示"曝光→点击→加购"转化漏斗数据  

四、非功能需求

需求类型具体要求
性能需求- 推荐响应延迟 ≤ 300ms(P99)
- 支持每秒5000+并发请求
可拓展性- 支持横向扩展应对流量峰值(K8s自动伸缩
- 模块化设计便于新增推荐策略(插件式架构)
安全性- 用户隐私数据加密存储(AES-256) + 匿名化处理
- 防刷量机制(识别机器流量)
可解释性- 推荐结果需附带可理解的推荐理由(自然语言生成)
- 提供特征重要性分析报告(SHAP值可视化)

五、竞争分析
    行业痛点对比

        传统电商平台:依赖协同过滤导致"信息茧房",推荐多样性不足
        新兴AI电商:过度依赖LLM生成内容,存在事实性错误风险
        本方案优势:LLM精排 + 传统召回融合,兼顾准确性、多样性、可解释性
    技术护城河

        基于DeepSeek API的领域自适应训练(电商垂直场景微调)
        多模态特征融合架构(文本+图像+用户行为联合建模)
        实时反馈闭环系统(RLHF机制持续优化)

六、落地
     分阶段实施

        第一阶段:搭建基础推荐链路(召回+精排) + AIGC内容生成
        第二阶段:接入实时用户反馈数据 + 构建RLHF机制
        第三阶段:部署可解释性模块 + 公平性检测系统
     风险规避

        LLM生成内容审核:接入人工审核队列 + 自动事实性校验
        冷启动问题:构建跨平台知识迁移学习框架
        计算资源优化:采用模型量化(FP16) + 缓存热点商品特征

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值