- 博客(23)
- 收藏
- 关注
原创 梯度提升决策树(Gradient Boosting Decision Trees,GBDT)
提升树是以分类树或回归树为基本分类器的提升方法。提升树被认为是统计学习 中性能最好的方法之一。 提升方法实际采用。以决策树为基函数的提升方法称为提升树 (boosting tree)。对决策树是, 对决策树是。:线性可分训练数据集T{(x1y1x2y2xNyN)} 其中,xi∈XRnyi∈Yi12N;弱学习算法:提升树fMx 不同问题的提升树学习算法,其主要区别在于使用的损失函数不同。
2024-01-09 14:07:18 1343
原创 AdaBoost算法的详细数学推导过程!!
AdaBoost(Adaptive Boosting) 提升(boosting)方法是一种常用的统计学习方法,应用广泛且有效。在分类问题 中,它通过改变训练样本的权重,学习多个分类器,并将这些分类器进行线性组合,提高分类的性能。 对于分类问题而言,给定一个训练样本集,求比较粗糙的分类规则(弱分类器)要 比求精确的分类规则(强分类器)容易得多。提升方法就是从弱学习算法出发,反复学习,得到一系列弱分类器(又称为基本分类器),然后组合这些弱分类器,构成一个强分类器。大多数的提升方法都是改变训练数据
2024-01-08 16:51:53 552
原创 谱聚类的原理全网最详细的推导过程!!
谱聚类谱聚类算法流程:input: X={x1,x2,...,xn} output: C={c1,c2,...ck2} (1)根据输入的相似矩阵生成方式构建样本的相似矩阵S(2)根据相似矩阵S构建邻接矩阵W,构建度矩阵D (3)计算出拉普拉斯矩阵L &nb
2023-12-12 11:45:06 1083
原创 Fuzzy c-means
模糊C-均值聚类算法:是一种模糊聚类算法,是K均值算法聚类的推广形式,隶属度取值为[0,1]区间内的任意一个数,提出的基本依据是“类内加权误差平方和最小化”准则。 这两个方法都是迭代求取最终的聚类划分,即聚类中心与隶属度值。两者都不能保证找到问题的最优解,都有可能收敛到局部极值,模糊c均值甚至可能是鞍点。达到无穷大时聚类就变得更模糊。是模糊器参数或者加权指数,
2023-11-23 15:01:49 157
原创 最小二乘线性回归
他们都能使均方差最小化。选择哪一个解作为输出,将由机器学习算法的归纳偏好决定,常见的做法是引入正则化项。通常不是满秩矩阵,例如在许多任务中会遇到大量的变量,其数目甚至超过样例数,导致X的列数多于行数,以一个例子来说明线性回归,假设银行贷款会根据 年龄 和 工资 来评估可放款的额度。:试图学得一个线性模型以尽可能准确地预测实际值的输出。 真实值和预测值之间肯定存在误差,用。是独立同分布的,且服从均值为0方差为。,添加一个全为1的特征,方便表示。为满秩矩阵或者正定矩阵时,令偏导数。就是银行最终放款额度。
2023-11-23 14:51:23 781
原创 矩阵求导总结
其中tr代表迹(trace)是方阵对角线元素之和,满足性质:对尺寸相同的矩阵A,B,,第一个等号是全微分公式,第二个等号表达了梯度与微分的联系。转置:$d(X^\top )=(dX)^ \top $表示尺寸相同的矩阵 X、Y逐个元素相乘。后,该如何写成右侧的形式并得到导数呢?表示出来代入,并用迹技巧将其他项交换至。 试图利用矩阵导数与微分的联系。从微分入手建立复合法则:先写出。 再看复合,假设已经求得。 观察一下可以断言,是逐元素标量函数运算,一、标量对矩阵求导术。逐个元素求导排列成和。
2023-11-13 21:18:27 276
原创 线性判别分析(Linear Discriminant Analysis,LDA)
的最大的d个特征值的乘积,此时对应的矩阵W为这最大的d个特征值对应的特征向量张成的矩阵。可以将分母进行归一化:如果分子分母都可以任意取值那将会有无穷解,故将分母限制长度为1。都是矩阵,不是标量,无法作为一个标量函数来优化!利用前面的瑞利商的性质,我们可以很快的知道,的最大特征值,最大的d个值的乘积就是矩阵。广义瑞利商是指这样的函数。的最大特征值,而最小值为矩阵。方法一:使用拉格朗日乘子法。方法二:使用瑞利商的结论。的最大特征值,或者说矩阵。为所有样本的均值向量、对于两个类别的中心点。瑞利商是指这样的函数。
2023-11-12 15:38:20 221
原创 环境配置遇到的问题及解决方法
基于Anaconda安装Tensorflowanaconda下tensorflow安装遇到的问题记录及解决办法Win10环境+ CUDA9.0 +CUDNN7.0+TensorFlow1.7/1.6/1.5配置解决python调用TensorFlow时出现FutureWarning: Passing (type, 1) or ‘1type’ as a synonym of type is d...
2020-01-26 13:16:53 456
原创 cv2.threshold()参数详解
cv2.threshold()函数的作用是将一幅灰度图二值化,基本用法如下:#ret:暂时就认为是设定的thresh阈值,mask:二值化的图像ret,mask = cv2.threshold(img2gray,175,255,cv2.THRESH_BINARY)plt.imshow(mask,cmap='gray')上面代码的作用是,将灰度图img2gray中灰度值小于175的点置0,...
2019-11-18 19:55:24 17153 2
原创 cv2.warpAffine()参数详解
官方给出的参数为:cv2.warpAffine(src, M, dsize[, dst[, flags[, borderMode[, borderValue]]]]) →dst其中:src - 输入图像。M - 变换矩阵。dsize - 输出图像的大小。flags - 插值方法的组合(int 类型!)borderMode - 边界像素模式(int 类型!)borderValue -...
2019-11-18 19:28:37 6172
原创 opencv cv2.rectangle 参数含义
cv2.rectangle 这个函数的作用是在图像上绘制一个简单的矩形。opencv 官网上给出的 cv2.rectangle 函数定义 如下:Python: cv2.rectangle(img, pt1, pt2, color[, thickness[, lineType[, shift]]]) → Noneimg – Image.pt1 – Vertex of the rectang...
2019-11-15 16:55:59 15565
原创 openCV-二值化,黑白图片
import cv2 #导入opencv库#读取一张图片,地址不能带中文imgviewx=cv2.imread("imgx/wa.jpg")#创建一个窗口,中文显示会出乱码cv2.namedWindow("东小东标题")imgviewx2=imgviewx.copy()#得到灰度图片imgviewx2=cv2.cvtColor(imgviewx2,cv2.COLOR_BGR2G...
2019-11-12 09:26:46 2383
原创 openCV-模板匹配
import cv2 #导入opencv库#参数:(要寻找的目标,原图片)def templatex(img_target,img_root): #模板匹配方法 #toolx=cv2.TM_SQDIFF_NORMED toolx=cv2.TM_CCORR_NORMED #toolx=cv2.TM_CCOEFF_NORMED h,w=img_targ...
2019-11-12 09:25:47 183
原创 openCV-直方图基本
import cv2 #导入opencv库import numpy#直方图均衡化,对比度改变def equalization_rgb(imgtu): #只能使用灰度图片 imgx=cv2.cvtColor(imgtu,cv2.COLOR_RGB2GRAY)#转换为灰度 #默认参数,自接使用 #imgtu=cv2.equalizeHist(imgx)#均衡化...
2019-11-12 09:25:10 190
原创 openCV-拍照程序
import cv2 #导入opencv库import numpy as np#调用摄像头def videox(): vix=cv2.VideoCapture(0) #打开摄像头 while True: ret,tu=vix.read() # ret为返回值,tu为当前帧 tu1=cv2.flip(tu,1) ...
2019-11-12 09:24:23 282
原创 openCV-属性介绍
import cv2 #导入opencv库import numpy as np#.........................................................................#读取一张图片,地址不能带中文'''第二个参数,取值可为:cv2.IMREAD_COLOR:默认参数,读入一副彩色图片,忽略alpha通道 cv2.IMREA...
2019-11-12 09:23:10 247
原创 python+openCV图像处理
一、什么是opencv?Open Source Computer Vision Library.OpenCV于1999年由Intel建立,如今由Willow Garage提供支持。OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux、Windows、MacOS操作系统上。它轻量级而且高效——由一系列 C 函数和少量C++类构成,同时提供了Python、Ruby、...
2019-11-12 08:49:04 1023
转载 R--ggplot包的学习(3)
Chap4. 折线图概述折线图可以反映某种现象的趋势。通常折线图的横坐标是时间变量,纵坐标则是一般的数值型变量。当然,折线图也允许横纵坐标为离散型和数值型。折线图通常用来对两个连续变量之间的相互依存关系进行可视化。其中x也可以是因子型变量。简单折线图geom_line()对于因子型变量,必须使用aes(group=1)以确保ggplot()知道这些数据点属于同一个分组,从而应该用一条折...
2019-07-24 16:35:59 2168
转载 R--ggpolt包的学习(2)
Chap1. R 基础加载文件默认情况下,数据集中的字符串(String)会被视为因子(Factor)处理,此时可以设置stringAsFactors = FALSE,将文本变量视为字符串表示。读取xlsx和xls文件:packagexlsx(Java)和gdata(Perl)foreign:read.spss;read.octave;read.systat;read.xport;read...
2019-07-24 16:34:31 694
转载 R--ggplot包的学习
分析数据要做的第一件事情,就是观察它。对于每个变量,哪些值是最常见的?值域是大是小?是否有异常观测?ggplot2图形之基本语法:ggplot2的核心理念是将绘图与数据分离,数据相关的绘图与数据无关的绘图分离ggplot2是按图层作图ggplot2保有命令式作图的调整函数,使其更具灵活性ggplot2将常见的统计变换融入到了绘图中。ggplot的绘图有以下几个特点:第一,有明确的起始(...
2019-07-24 16:31:31 602
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人