Qwen3震撼发布,用openGauss x Dify抢先体验,秒速搭建智能知识库

2025年4月29日,阿里巴巴正式发布新一代通义千问大模型Qwen3系列,以混合专家架构(MoE)与混合推理模式为核心突破,刷新全球开源大模型性能纪录。Qwen3系列包含两大分支:

  1. Qwen3模型:覆盖0.6B、1.7B、4B、8B、14B、30B、32B、235B全尺寸,其中Qwen3-4B性能直逼前代72B模型;

  2. Qwen3-MoE模型:包含30B-A3B(激活参数量3B)、235B-A22B(激活参数量22B)等版本,以10%激活参数实现超越同规模密集模型的性能,推理成本仅为DeepSeek-R1的1/3。

Qwen3的核心技术亮点包括

  • 混合推理模式:支持动态切换“深度思考”(复杂问题多步推理)与“快速响应”(简单任务秒级回复),算力消耗最高降低90%;

  • 性能全面领先:在AIME'24数学评测中斩获85.7分,LiveCodeBench v5代码测试突破70.7分,超越Grok-3与Gemini-2.5-Pro,登顶全球开源模型榜首;

  • 多模态与多语言支持:覆盖119种语言,集成视觉理解能力,适配医疗诊断、工业质检等跨模态场景。


在Qwen3发布后,openGauss团队联合鲲鹏社区第一时间完成基于Qwen3的RAG解决方案全链路验证,这意味着开发者现在就可以一键拉起基于openGauss的编排组件容器镜像,并利用Qwen3实现畅快的RAG知识问答及推理。

图片

快速体验Qwen3

体验之前,您需确认ollama已正确安装并启动,可运行如下命令确认:

ollama list

您可以使用如下命令,一键拉起Qwen3大模型:

ollama run qwen3:latest

模型服务起来之后,您可以直接进行问答体验最新版Qwen3,推理结果如下:

图片

搭建openGauss知识库

请提前安装好Docker Compose软件,如未安装请按照下面描述进行离线安装。

Docker Compose软件安装

下载Docker Compose软件包。

wget https://github.com/docker/compose/releases/download/v2.33.1/docker-compose-linux-aarch64

安装Docker Compose。

mv docker-compose-linux-aarch64 /usr/bin/docker-composechmod +x /usr/bin/docker-compose
编排组件部署

1.下载Dify 1.1.3软件包。 访问链接https://github.com/langgenius/dify/tree/1.1.3,然后如下图所示,直接“Download ZIP”下载压缩包并上传到服务器。

图片

2.创建目录并解压。​​​​​​​

mkdir /usr/local/difyunzip dify-1.1.3.zip -d /usr/local/dify/cd /usr/local/dify/dify-1.1.3

3.解压软件包并进到Dify源码目录,执行下面的命令进行安装部署。​​​​​​​

cd dockercp .env.example .envvim .env

修改.env第387行为:VECTORE_STORE=opengauss

图片

4.以后台模式运行服务。 命令会在线下载Docker镜像并启动对应的服务,需等待30分钟左右,实际时间根据网络情况而定。该命令会自动拉起openGauss服务,无需手动部署。

docker-compose up -d

在线问答

1.访问本地部署的Dify web服务页面。

http://your_server_ip

2.创建一个管理员账户。输入邮箱和密码即可创建。

3.接入LLM服务。 在主界面点击右上角用户名,然后点击“设置”进入设置页面,单击“模型供应商”,选择“Ollama”卡片,单击“安装”按钮。

图片

安装完成后,在添加模型页面,“模型类型”选择“LLM”,配置Qwen3模型。

图片

4.接入Embedding服务。 在添加模型页面,“模型类型”选择“Text Embedding”,

图片

5.创建应用。 轻点Dify平台首页左侧的“创建空白应用”,选择“聊天助手”类型应用并进行简单的命名。

图片

6.选择LLM模型。 单击右上角“模型”选择下拉框,选择qwen3模型。

图片

7.对话互动。 配置完成后即可在聊天框中进行互动。输入“xx时尚公司经营范围有哪些”,输出如下所示,即完成了一次对话互动。本次对话还未使用RAG功能,如果需要使能RAG则该聊天助手应用需要关联知识库,具体的操作参考下面“在应用内集成知识库”的流程。

图片

知识库可以作为外部知识提供给大语言模型用于精确回复用户问题,你可以在Dify的所有应用类型内关联已创建的知识库。

8.添加知识库。 为获取更精准回答,本次导入XX公司相关背景介绍信息如下:

图片

等待知识导入完成。

图片

然后,在上面创建的聊天助手应用的编排页面,“上下文”区域内点击“添加”按钮添加知识库。

图片

9.对话互动。 LLM将首先从知识库内获取与问题相关上下文,在此基础上进行总结并给出更高质量的回答。在对话框内输入相同的问题“xx时尚公司经营范围有哪些”,输出如下:

图片

至此,基于Qwen3大模型和openGauss向量数据库为核心的RAG知识库搭建并测试完成。

相关链接

Qwen3模型:https://ollama.com/library/qwen3

openGauss项目仓库:https://gitcode.com/opengauss/openGauss-server

鲲鹏社区RAG解决方案:https://www.hikunpeng.com/document/detail/zh/kunpengrag/bestpractice/kunpengrag_21_0001.html

Dify项目仓库:https://github.com/langgenius/dify

### 使用 Qwen-Agent 搭建和配置知识库 安装最新版本的`qwen-agent`可以通过命令行执行特定指令来完成[^1]。这一步骤确保获取到所有必要的更新和支持特性。 对于构建基于文档的知识库,可以利用`doc_parser.py`工具解析多种类型的文件格式,此功能由`langchain.document_loaders`提供支持[^4]。这意味着无论是PDF、Word还是其他常见文档格式都可以被有效处理并纳入知识库中。 创建一个基本的知识库涉及几个方面: #### 安装依赖包 ```bash pip install -U qwen-agent[rag,code_interpreter] ``` #### 初始化Qwen-Agent实例 通过Python脚本初始化一个新的Qwen-Agent实例是开始的第一步。这里假设已经完成了上述提到的软件包安装过程。 ```python from qwen_agent import Agent agent = Agent() ``` #### 加载文档至知识库 加载本地或远程存储中的文档进入内存作为知识源的一部分。这个过程中会调用之前提及过的`doc_parser.py`来进行不同格式的支持。 ```python # 假设有一个名为example.pdf的文件位于当前目录下 knowledge_base = agent.load_knowledge('path/to/example.pdf') ``` #### 配置索引与查询接口 为了使新加入的数据能够快检索,在设置好初始数据集之后还需要建立相应的索引结构以便后续高效访问。这部分具体实现细节取决于所使用的后台技术栈以及个人偏好设定;然而,通常情况下这些操作会被简化成易于理解的方法调用来供开发者使用。 #### 执行查询测试 最后,验证一切正常工作的一个简单方法就是尝试向刚刚设立好的知识库发起一些基础询问,并观察返回的结果是否符合预期。 ```python response = agent.query("请问这份文档主要讨论了什么?") print(response) ``` 以上流程概述了一个典型场景下的步骤——即如何借助于`qwen-agent`及其配套组件建立起属于自己的个性化知识管理系统[^2][^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Gauss松鼠会

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值