目标
将MySQL的数据拿到Hive进行分析统计,将统计结果返回到MySQL。
分析:
1) 在hive中创建一个emp_etl对应的表
2) 使用sqoop将mysql中的emp_etl表导入到hive表中
3) 在hive中进行统计分析(每个部门多少人),然后结果写入到hive结果表中
4) 将hive结果表通过sqoop导出到mysql表中
5)shell封装整个过程,通过调度工具定时调度
一、MySQL原始数据
mysql> select * from emp_etl;
+-------+--------+-----------+------+------------+-------+------+--------+
| empno | ename | job | mgr | hiredate | sal | comm | deptno |
+-------+--------+-----------+------+------------+-------+------+--------+
| 7369 | SMITH | CLERK | 7902 | 1980-12-17 | 800 | NULL | 20 |
| 7499 | ALLEN | SALESMAN | 7698 | 1981-2-20 | 1600 | 300 | 30 |
| 7521 | WARD | SALESMAN | 7698 | 1981-2-22 | 1250 | 500 | 30 |
| 7566 | JONES | MANAGER | 7839 | 1981-4-2 | 2975 | NULL | 20 |
| 7654 | MARTIN | SALESMAN | 7698 | 1981-9-28 | 1250 | 1400 | 30 |
| 7698 | BLAKE | MANAGER | 7839 | 1981-5-1 | 2850 | NULL | 30 |
| 7782 | CLARK | MANAGER | 7839 | 1981-6-9 | 2450 | NULL | 10 |
| 7788 | SCOTT | ANALYST | 7566 | 1987-4-19 | 3000 | NULL | 20 |
| 7839 | KING | PRESIDENT | NULL | 1981-11-17 | 5000 | NULL | 10 |
| 7844 | TURNER | SALESMAN | 7698 | 1981-9-8 | 1500 | 0 | 30 |
| 7876 | ADAMS | CLERK | 7788 | 1987-5-23 | 1100 | NULL | 20 |
| 7900 | JAMES | CLERK | 7698 | 1981-12-3 | 950 | NULL | 30 |
| 7902 | FORD | ANALYST | 7566 | 1981-12-3 | 3000 | NULL | 20 |
| 7934 | MILLER | CLERK | 7782 | 1982-1-23 | 1300 | NULL | 10 |
| 8888 | HIVE | PROGRAM | 7839 | 1988-1-23 | 10300 | NULL | 10 |
+-------+--------+-----------+------+------------+-------+------+--------+
二、Hive中创建对应的表并导入数据
1、创建表
hive (default)> create table emp_analy(
empno int, ename string, job string, mgr int, hiredate string, sal double, comm double, deptno int
)row format delimited fields terminated by '\t';
2、数据导入到Hiv 的emp_analy表
sqoop import \
--connect jdbc:mysql://hadoop001:3306/sqoop \
--username root \
--password 123456 \
--table emp_etl \
-m 1 \
--hive-import \
--hive-table emp_analy \
--fields-terminated-by '\t'
三、分析统计需要的结果(每个部门总人数)
1、创建存储统计结果的表
hive (default)> create table emp_result(deptno int ,nums int) row format delimited fields terminated by '\t';
2、统计结果数据插入到emp_result表
hive (default)> insert overwrite table emp_result select deptno,count(*) as nums from emp_analy group by deptno;
四、结果数据导出到MySQL中
1、MySQL中创建接收结果数据的表
mysql> create table emp_result_end(deptno int ,nums int);
2、从Hive将结果数据导出到MySQL
sqoop export \
--connect jdbc:mysql://hadoop001:3306/sqoop \
--username root \
--password 123456 \
--table emp_result_end \
--export-dir /user/hive/warehouse/emp_result \
-m 1 \
--verbose \
--fields-terminated-by '\t'
3、MySQL中查看统计结果
mysql> select * from emp_result_end;
+--------+------+
| deptno | nums |
+--------+------+
| 10 | 4 |
| 20 | 5 |
| 30 | 6 |
+--------+------+
3 rows in set (0.00 sec)
五、shell封装
1、自动创建Hive表
vi auto_create_hive_table.sh
#! /bin/bash
hive -e "
use default;
create table if not exists emp_analy (
empno int,
ename string,
job string,
mgr int,
hiredate string,
sal double,
comm double,
deptno int
)row format delimited fields terminated by '\t';"
2、原始数据到Hive表
vi import_data_hive.sh
#! /bin/bash
sqoop import \
--connect jdbc:mysql://hadoop001:3306/sqoop \
--username root \
--password 123456 \
--table emp_etl \
-m 1 \
--hive-import \
--hive-table emp_analy \
--fields-terminated-by '\t'
3、Hive创建结果表
vi hive_create_result_table.sh
#!/bin/bash
hive -e "
use default;
create table emp_result(
deptno int ,
nums int) row format delimited fields terminated by '\t';
"
4、统计结果插入到Hive结果表
vi insert_data_emp_result.sh
#! /bin/bash
hive -e "
use default;
insert overwrite table emp_result
select deptno,count(*) as nums from emp_analy group by deptno;
"
5、MySQL创建接收统计数据的表
vi auto_create_mysql_table.sh
#!/bin/bash
mysql -uroot -p123456 sqoop -e "
create table if not exists emp_result_end(deptno int ,nums int);
truncate table emp_result_end;
"
5、统计数据导出到MySQL
vi export_data_mysql.sh
sqoop export \
--connect jdbc:mysql://hadoop001:3306/sqoop \
--username root \
--password 123456 \
--table emp_result_end \
--export-dir /user/hive/warehouse/emp_result \
-m 1 \
--verbose \
--fields-terminated-by '\t'
6、创建日志文件
touch etl.log
7、所有脚本封装到一个脚本中统一运行
vi etl.sh
#! /bin/bash
echo 'start -----------------' >>/opt/etl/etl.log
echo `date +%Y/%m/%d-%H:%M:%H` >>/opt/etl/etl.log
sh /opt/etl/auto_create_hive_table.sh
sh /opt/etl/import_data_hive.sh
sh /opt/etl/hive_create_result_table.sh
sh /opt/etl/insert_data_emp_result.sh
sh /opt/etl/auto_create_mysql_table.sh
sh /opt/etl/export_data_mysql.sh
echo 'end ==================' >>/opt/etl/etl.log
echo `date +%Y/%m/%d-%H:%M:%H`>>/opt/etl/etl.log
只需要执行etl.sh脚本统计结果就会导出到MySQL了,由于脚本设置不严谨,所以执行脚本前需删除已存在的表。当脚本完善后可以通过调度器进行调度。