背景
学习大模型的必要性
隐约记得,大模型刚刚出现在视野是在2022年底,朋友圈里面刚刚有一些帖子讨论“ChatGPT会成为下一代搜索引擎么?”再看现在,2024年7月份,短短一年半的时间,以ChatGPT为代表的一众智能助手,已经成为程序员、文字工作者、知识密集型白领工作中不可替代的提效工具,并在不断高速扩展着它们的影响力。以大模型为中心的四层架构(芯片、深度学习框架、大模型、大模型应用),都在以不可置信的速度迭代着,迭代的速度甚至超出了摩尔定律。
这是一个全新的时代,虽然又有很多人趋之若鹜,让人不得不怀疑是否有技术泡沫,但大模型的技术价值是毋庸置疑的。所以接触这样一门新技术,并且能够系统的学习,是一名程序员与时俱进,不被时代抛弃的必要条件。
正在做的事
在大模型概念提出之初,我正在百度ACG(智能云事业群组)从事算法研发工作,服务的产品是“知识中台”,一款面向B端用户的一站式知识管理解决方案。简单来说,用户把数据接入到这个系统中,会被加工成“知识”,用户可以通过搜、推、问答等各种方式获取到知识。我们的使命就是帮助用户更准确、更高效的获取到知识,辅助用户做出更好的决策。团队工作的方向涉及知识图谱、搜索、问答、推荐、辅助决策等,我主要关注搜索、问答的效果优化。
在这中间,我们使用传统的NLP技术遇到了很多的问题,用户意图识别不准、搜索不智能、问答泛化能力差等等问题,加上toB各种定制化需求,这种问题被无限放大,我们似乎看不到破局的希望。
为什么报名
- 大模型的技术能够很好的解决我们遇到的问题
- 针对上面说到的意图理解能力、泛化能力、智能化水平,大模型相较于传统模型,都有非常大的优势,且集各种能力于一身,能够极大的提升系统的智能化水平。
- 想系统的学习微调的知识
- 由于个人非深度学习科班出身,且网络上关于大模型的知识散乱、良莠不齐,需要从一门课程中更快、更系统的掌握知识脉络,搭建起大模型的学习框架,再用网络上散落的知识填充内容。
课程的感想
1.知识全面,市面上能看到的微调方法,基本上都覆盖到了,且针对重点的微调方法和模型,有实践指导。
2.授之以渔,彭老师能够清楚的讲述每个关键技术点的来龙去脉,很好的串联起大模型微调的知识体系,并且会告知获取这些知识的方法,掌握的会更好。
3.课外答疑和辅导充分,有设置交流群和直播答疑,能够更好的互动和答疑,掌握知识更扎实。
收获
通过课程的学习,能够更系统的学习微调的知识,后面还需要结合企业的应用更多的实践,目前正在从RAG这个方向为公司提升应用的效果。
建议
如果有可能的话,可以引入一些项目上的实践,在实际应用上给与更多的指导。