文章目录
本文属于我的机器学习/深度学习系列文章,点此查看系列文章目录
一、超平面
超平面不一定是一个面,它是所处向量空间的一个子空间,如立体空间中一个面,二维平面上一条线。它的作用在于将空间中的数据一分为二,达到分类的目的。
1.1 超平面表达式
g ( x ) = w T x + w 0 = 0 g(x) = \mathbf w^T\mathbf x+w_0 = 0\\ g(x)=wTx+w0=0
- w = ( w 1 , w 2 , . . . , w l ) T \mathbf w = (w_1,w_2,...,w_l)^T w=(w1,w2,...,wl)T,权向量(超平面法向量)
- x = ( x 1 , x 2 , . . . , x l ) T \mathbf x = (x_1,x_2,...,x_l)^T x=(x1,x2,...,xl)T,实例(样本向量)
- w 0 w_0 w0,偏移量
在实际中,w确定,因此这个方程代表所有满足的向量x(点)的集合, w T x w^Tx wTx可视为x向w的投影乘以w的模长
这个方程的解读也可以是x向w的投影长度为 − w 0 ∣ ∣ w ∣ ∣ \frac{-w_0}{||w||} ∣∣w∣∣−w0的点集合。
二、线性函数:距离刻画
上面的超平面定义了所有在超平面上的点,那如果是不在超平面上的点与该超平面又有什么关系?
设 x p x_p xp是x在超平面 w T x + w 0 = 0 \mathbf w^T\mathbf x+w_0=0 wTx+w0=0的投影点,得公式如下:
x = x p + ( x − x p ) w T x ∣ ∣ w ∣ ∣ = w T x p ∣ ∣ w ∣ ∣ + w T ( x − x p ) ∣ ∣ w ∣ ∣ , 两 边 同 时 乘 上 w T ∣ ∣ w ∣ ∣ \mathbf x = \mathbf x_p + (\mathbf x-\mathbf x_p) \\ \frac{\mathbf w^Tx}{||\mathbf w||} = \frac{\mathbf w^T\mathbf x_p}{||\mathbf w||} + \frac{\mathbf w^T(\mathbf x - \mathbf x_p)}{||\mathbf w||}, 两边同时乘上 \frac{\mathbf w^T}{||\mathbf w||} \\ x=xp+(x−xp)∣∣w∣∣wTx=∣∣w∣∣wTxp+∣∣w∣∣wT(x−xp),两边同时乘上∣∣w∣∣wT
可绘出图例如下:
令 d = w T x p ∣ ∣ w ∣ ∣ , z = w T ( x − x p ) ∣ ∣ w ∣ ∣ 结 合 w T x p + w 0 = 0 , 有 d = − w 0 ∣ ∣ w ∣ ∣ , z = w T x + w 0 ∣ ∣ w ∣ ∣ = g ( x ) ∣ ∣ w ∣ ∣ 令d = \frac{\mathbf w^T\mathbf x_p}{||\mathbf w||},z = \frac{\mathbf w^T(\mathbf x - \mathbf x_p)}{||\mathbf w||}\\ 结合\ \mathbf w^T\mathbf x_p + w_0 = 0,\\ 有d = \frac{-w_0}{||\mathbf w||},z = \frac{\mathbf w^T\mathbf x+w_0}{||\mathbf w||} = \frac{g(\mathbf x)}{||\mathbf w||} 令d=∣∣w∣∣wTxp,z=∣∣w∣∣