Jon fought bravely to rescue the wildlings who were attacked by the white-walkers at Hardhome. On his arrival, Sam tells him that he wants to go to Oldtown to train at the Citadel to become a maester, so he can return and take the deceased Aemon's place as maester of Castle Black. Jon agrees to Sam's proposal and Sam sets off his journey to the Citadel. However becoming a trainee at the Citadel is not a cakewalk and hence the maesters at the Citadel gave Sam a problem to test his eligibility.
Initially Sam has a list with a single element n. Then he has to perform certain operations on this list. In each operation Sam must remove any element x, such that x > 1, from the list and insert at the same position , , sequentially. He must continue with these operations until all the elements in the list are either 0 or 1.
Now the masters want the total number of 1s in the range l to r (1-indexed). Sam wants to become a maester but unfortunately he cannot solve this problem. Can you help Sam to pass the eligibility test?
The first line contains three integers n, l, r (0 ≤ n < 250, 0 ≤ r - l ≤ 105, r ≥ 1, l ≥ 1) – initial element and the range l to r.
It is guaranteed that r is not greater than the length of the final list.
Output the total number of 1s in the range l to r in the final sequence.
7 2 5
4
10 3 10
5
Consider first example:
Elements on positions from 2-nd to 5-th in list is [1, 1, 1, 1]. The number of ones is 4.
For the second example:
Elements on positions from 3-rd to 10-th in list is [1, 1, 1, 0, 1, 0, 1, 0]. The number of ones is 5.
///关键用好对称轴位置 递归即可
粗心卡了半天T_T
#include <algorithm>
#include <iostream>
#include <cstring>
#include <iomanip>
#include <string>
#include <cstdio>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
using namespace std;
#define For(i,a,b) for(i=a;i<=b;i++)
#define _For(i,a,b) for(i=b;i>=a;i--)
#define Out(x) cout<<x<<endl
#define Outdouble(x,a) cout<<fixed<<setprecision(a)<<1.0*x<<endl
#define pf prllf
#define sf scanf
#define mset(arr,num) memset(arr,num,sizeof(arr))
#define ll long long
const ll inf = 1e12+10; ///
#define ok std::ios::sync_with_stdio(0)
#pragma comment(linker, "/STACK:102400000,102400000")
// #define debug
#if defined (debug)
---check---
#endif
/// ^_^ ^_^ ^_^ ^_^ ^_^ ^_^ ^_^ ^_^ ^_^ ^_^ ^_^ ^_^ ^_^ ///
/* 10
5 0 5
212 0 212
101 1 101 0 101 1 101 可以观察到规律 关键记录对称轴位置
*/
ll cnt;
ll num[1010];
ll op(ll key)
{
if(key == 0)
{
return 0;
}
if(key == 1)
{
return 1;
}
ll ans = 1;
ll j = cnt;
ll len = 1;
while(len*2+1 <= key)
{
len=len*2+1;
ans=ans*2+num[j]; ///加上对称轴元素
j--;
}
///关键 len不可能到达对称轴位置 一直是差一
if(len == key) return ans; ///正好计算完毕
else if(key - len == 1) return ans + num[j]; ///如果实际长度与询问差1 那么加上对称轴位置的数
else return (ans + num[j] +op(key % (len+1))); ///否则加上对称轴元素 取余 从头计算
}
int main()
{
ll i,l,r;
ll n,ans = 0;
while(cin>>n>>l>>r)
{
cnt = 0;
if(n == 0)
{
cout<<0<<endl;
continue ;
}
else if(n == 1)
{
cout<<1<<endl;
continue;
}
else
{
while(n>1)
{
cnt++; ///1~ans
num[cnt] = n%2;
n=n>>1;
}
cout<<op(r) - op(l-1)<<endl;
}
}
return 0;
}
/**
903316762502 354723010040 354723105411
*/