题目背景
有如下一个双人游戏:N(2 <= N <= 100)个正整数的序列放在一个游戏平台上,游戏由玩家1开始,两人轮流从序列的任意一端取一个数,取数后该数字被去掉并累加到本玩家的得分中,当数取尽时,游戏结束。以最终得分多者为胜。
题目描述
编一个执行最优策略的程序,最优策略就是使玩家在与最好的对手对弈时,能得到的在当前情况下最大的可能的总分的策略。你的程序要始终为第二位玩家执行最优策略。
输入输出格式
输入格式:
第一行: 正整数N, 表示序列中正整数的个数。
第二行至末尾: 用空格分隔的N个正整数(大小为1-200)。
输出格式:
只有一行,用空格分隔的两个整数: 依次为玩家一和玩家二最终的得分。
输入输出样例
输入样例#1:
6
4 7 2 9 5 2
输出样例#1:
18 11
题解
本题是一道区间DP。
状态设计:F[i][j]表示用i到j所有的数进行游戏先手获得的最大分数
分别考虑取左边和取右边的情况,取完之后先后手互换。本次先手的最大分数由上一次后手的最大分数转移而来。而取完i到j所有数后手获得的最大分数为sum(i,j)-F[i][j]
状态转移:F[i][j]=max{sum(i+1,j)-F[i+1][j]+A[i],sum(i,j-1)-F[i][j-1]+A[j]}
(sum(i,j)表示A[i]+A[i+1]+…+A[j],A[i]代表第i个数的分数)
边界处理:F[i][i]=A[i]
代码
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstdlib>
#include <cstring>
#include <cmath>
using namespace std;
const int maxn =103;
int f[maxn][maxn];
int a[maxn],s[maxn];
int n;
int main()
{
int n;
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
s[i]=s[i-1]+a[i];//处理前缀和
}
for(int i=1;i<=n;i++) f[i][i]=a[i];
for(int l=1;l<n;l++)//枚举区间长度
{
for(int i=1;i+l<=n;i++)//枚举区间起点
{
int j=i+l;
f[i][j]=max(f[i][j],s[j]-s[i]-f[i+1][j]+a[i]);//取左边
f[i][j]=max(f[i][j],s[j-1]-s[i-1]-f[i][j-1]+a[j]);//取右边
}
}
printf("%d %d\n",f[1][n],s[n]-f[1][n]);
return 0;
}