Acwing 343. 排序

题目思路

题目中的A>B 转化为 g[A][B] = 1 然后每次输入一次就进行一次floyd
再check一下是否能确定有无解 对于每个i 都没有d[i][i] = 1 或者 d[i][j]=d[j][i]=1
如果能确定 更新一下t 最后方便输出
然后对于从小到大输出顺序可以遍历n次每次找最小的那个即无法找到d[i][j]=1的i值为当前最小值

代码

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>

using namespace std;

const int N = 30;

int n, m;
bool d[N][N];
bool st[N];

void floyd()
{
    
    for (int k = 0; k < n; k ++ )
        for (int i = 0; i < n; i ++ )
            for (int j = 0; j < n; j ++ )
                d[i][j] |= d[i][k] && d[k][j];
}

int check()
{
    for (int i = 0; i < n; i ++ )
        if (d[i][i]) 
            return 2;
    
    for (int i = 0; i < n; i ++ )
        for (int j = 0; j < i; j ++ )
            if (!d[i][j] && !d[j][i])
                return 0;
    
    return 1;
}

char get_min()
{
    for (int i = 0; i < n; i ++ )
    {
        if (!st[i])
        {
            bool flag = true;
            for (int j = 0; j < n; j ++ )
            {
                if (!st[j] && d[j][i])
                {
                    flag = false;
                    break;
                }
            }
            if (flag)
            {
                st[i] = true;
                return i + 'A';
            }
        }
    }
}

int main()
{
    while (cin >> n >> m, n || m)
    {
        memset(d, 0, sizeof d);
        int type = 0, t;
        
        for (int i = 1; i <= m; i ++ )
        {
            char str[5];
            cin >> str;
            int a = str[0] - 'A', b = str[2] - 'A';
            if (!type)
            {
                d[a][b] = 1;
                floyd();
                type = check();
                if (type) t = i;
            }
        }
        
        if (!type) puts("Sorted sequence cannot be determined.");
        else if (type == 2) printf("Inconsistency found after %d relations.\n", t);
        else
        {
            memset(st, 0, sizeof st);
            printf("Sorted sequence determined after %d relations: ", t);
            for (int i = 0; i < n; i ++ ) printf("%c", get_min());
            printf(".\n");
        }
    }
    
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值