集美大学第14届蓝桥校选题解

本次比赛的出题表如下:
在这里插入图片描述

退役一年,勋总还是那么强呜呜呜
在这里插入图片描述

填空题

[1] 十甚至九

出题人:陈文静

题意

计算 ( h o m o ) 10 = ( 114 ) 5 + ( 141 ) 9 + ( 198 ) 10 (homo)_{10}=(114)_5+(141)_9+(198)_{10} (homo)10=(114)5+(141)9+(198)10 ,其中 ( x ) y (x)_y (x)y 代表数字 x x x 是用 y y y 进制表示的。

思路

按权展开计算十进制结果,并求和。

( 114 ) 5 = ( 1 × 5 2 + 1 × 5 1 + 4 × 5 0 ) 10 = ( 34 ) 10 (114)_5=(1\times5^2+1\times5^1+4\times5^0)_{10}=(34)_{10} (114)5=(1×52+1×51+4×50)10=(34)10

( 141 ) 9 = ( 1 × 9 2 + 4 × 9 1 + 1 × 9 0 ) 10 = ( 118 ) 10 (141)_9 = (1\times9^2+4\times9^1+1\times9^0)_{10}=(118)_{10} (141)9=(1×92+4×91+1×90)10=(118)10

( h o m o ) 10 = ( 34 ) 10 + ( 118 ) 10 + ( 198 ) 10 = ( 350 ) 10 (homo)_{10}=(34)_{10}+(118)_{10}+(198)_{10}=(350)_{10} (homo)10=(34)10+(118)10+(198)10=(350)10

因此 h o m o homo homo 350 350 350

拓展

[蓝桥杯] X X X 进制减法
第十三届蓝桥杯C/C++省赛B组 E题

进制规定了数字在数位上逢几进一。

X X X 进制是一种很神奇的进制,因为其每一数位的进制并不固定!例如说某种 X X X 进制数,最低数位为二进制,第二数位为十进制,第三数位为八进制,则X 进制数 321 321 321 转换为十进制数为 65 65 65

现在有两个 X X X 进制表示的整数 A A A B B B,但是其具体每一数位的进制还不确定,只知道 A A A B B B 是同一进制规则,且每一数位最高为 N N N 进制,最低为二进制。请你算出 A − B A − B AB 的结果最小可能是多少。

请注意,你需要保证 A A A B B B X X X 进制下都是合法的,即每一数位上的数字要小于其进制。

输出一行一个整数,表示 X X X 进制数 A − B A − B AB 的结果的最小可能值转换为十进制后再模 1000000007 1000000007 1000000007 的结果。

实际上进位计数制,更重要的是计数。我们可以根据进位的规则,从 0 0 0 开始不断加 1 1 1 ,根据进位规则产生新的数字。最后我们既可以通过进位表示得出某个数字表示的大小,也可以通过某个数字的大小得到进位表示。

X i X_i Xi X 0 X_0 X0 X 1 X_1 X1 X 2 X_2 X2 X 3 X_3 X3 X 4 X_4 X4 X 5 X_5 X5 X 6 X_6 X6 X 7 X_7 X7 X 8 X_8 X8
B a s e 10 Base_{10} Base10012345678
B a s e 2 Base_2 Base20110111001011101111000
B a s e 5 Base_5 Base50123410111213

现在给定一个数字 X X X ,只要知道 X X X 之前有多少个数字就可以确定 X X X 的大小。

举一个十六进制的例子: ( A B C ) 16 = ( A 00 + B 0 + C ) 16 (ABC)_{16}=(A00+B0+C)_{16} (ABC)16=(A00+B0+C)16 ,假设我们现在想知道 ( A B C ) 16 (ABC)_{16} (ABC)16 在五进制下表示是什么,我们可以考虑 ( A 00 ) 16 , ( B 0 ) 16 , ( C ) 16 (A00)_{16} ,(B0)_{16},(C)_{16} (A00)16,(B0)16,(C)16 分别在五进制下的表示是什么,最后将这三者用五进制加法加起来即可。

对于 ( A 00 ) 16 (A00)_{16} (A00)16 ,我们可以固定最高位为 [ ( 0 ) 16 , ( 9 ) 16 ] [(0)_{16},(9)_{16}] [(0)16,(9)16] 这个范围的数,那么低两位任意取 [ ( 0 ) 16 , ( F ) 16 ] [(0)_{16},(F)_{16}] [(0)16,(F)16] 中的任意值组合一定都小于 ( A 00 ) 16 (A00)_{16} (A00)16,根据计数乘法原理可以知道低两位存在 ( F + 1 ) 16 × ( F + 1 ) 16 (F+1)_{16} \times (F+1)_{16} (F+1)16×(F+1)16 种组合可能,最后再乘上最高位可能取值的数量。 ( A 00 ) 16 (A00)_{16} (A00)16 用十六进制乘法表示就是 ( 9 + 1 ) 16 × ( F + 1 ) 16 × ( F + 1 ) 16 (9+1)_{16} \times (F+1)_{16} \times (F+1)_{16} (9+1)16×(F+1)16×(F+1)16 ,于是可以将乘法的十六进制数转换为五进制数进行乘法就得到了 ( A 00 ) 16 (A00)_{16} (A00)16 在五进制下的表示,即 ( 14 + 1 ) 5 × ( 30 + 1 ) 5 × ( 30 + 1 ) 5 (14+1)_5 \times (30+1)_5 \times (30+1)_5 (14+1)5×(30+1)5×(30+1)5

最终可以得到
( A B C ) 16 = ( A 00 ) 16 + ( B 0 ) 16 + ( C ) 16 = ( 9 + 1 ) 16 × ( F + 1 ) 16 × ( F + 1 ) 16 + ( A + 1 ) 16 × ( F + 1 ) 16 + ( C ) 16 = ( 14 + 1 ) 5 × ( 30 + 1 ) 5 × ( 30 + 1 ) 5 + ( 20 + 1 ) 5 × ( 30 + 1 ) 5 + ( 22 ) 5 \begin{aligned} (ABC)_{16} &= (A00)_{16}+(B0)_{16}+(C)_{16} \\ &= (9+1)_{16}\times (F+1)_{16} \times (F+1)_{16} + (A+1)_{16} \times (F+1)_{16} + (C)_{16} \\ &=(14+1)_5 \times (30+1)_5 \times (30+1)_5 +(20+1)_5 \times (30+1)_5 + (22)_5 \end{aligned} (ABC)16=(A00)16+(B0)16+(C)16=(9+1)16×(F+1)16×(F+1)16+(A+1)16×(F+1)16+(C)16=(14+1)5×(30+1)5×(30+1)5+(20+1)5×(30+1)5+(22)5
根据五进制加法就可以得到五进制的表示,另外乘法本质上也是加法。观察每一个数位,乘的数值始终是一致的,因此可以把这个固定值称为权,以上式子展开的过程称为按权展开。

对于蓝桥杯的这道题,可以先考虑 X X X 进制如何转换为 10 10 10 进制,我们可以参考上面的思考过程。因为每一个数位的进位基数可能是不一样的,因此每一位的权就变为更低位进位基数的连乘积。因为 X X X 进制的每一位的进制基数是不确定的,但是我们知道位权是由更低位进制基数决定的,那么贪心的想,每一位的进位基数尽可能小就可以让数的整体尽可能小,但是基数不能小于或等于 A , B A,B A,B 对应位的最大值(这是进位制的限制)。

此外还需要考虑减法借位是否会影响贪心的策略:[1] 不产生借位,不影响贪心策略 [2] 产生借位,在确定高位进位基数的情况下,借位对高位的影响一致,而当前位进位基数越小借位后的数值越小,且进位基数越小高位的权越小。因此减法借位不会影响贪心策略。

最后生活中常见的 X X X 进制即时分秒,进位基数分别为 24 , 60 , 60 24,60,60 24,60,60

[2] 九大于十

出题人:陈文静

题意

区间 [ 1919 , 114514 ] [1919,114514] [1919,114514] 中的正整数构成数对 < x , y > <x,y> <x,y>,按字典序比较满足 x > y x \gt y x>y 的数对的数量。

思路

可以写一个复杂度为 O ( n 2 ) O(n^2) O(n2) 的程序枚举所有数对,将数字转换为字符串比较并统计答案,C++耗时大概 40 40 40 分钟左右。

也可以考虑先对 n n n 个数字按字典序排序,时间复杂度 O ( n log ⁡ n ) O(n\log n) O(nlogn),那么字典序大于排序后第 i i i 个数字的有 n − i n-i ni 个,最后求和即可。

可以考虑:对于 n n n 个数字,一共进行 n × n n \times n n×n 次比较,其中 n n n 个数对的比较是相等的。剩下 n × n − n n \times n - n n×nn 个数对一半是满足小于关系,一半满足大于关系,因此满足大于关系的数量为 n × n − n 2 \frac{n \times n - n}{2} 2n×nn ,代入公式时间复杂度 O ( 1 ) O(1) O(1)

区间长度 n = 114514 − 1919 + 1 = 112596 n = 114514-1919+1=112596 n=1145141919+1=112596 ,因此最终答案为 112596 × 112595 2 = 6338873310 \frac{112596 \times 112595}{2}=6338873310 2112596×112595=6338873310

C++计算时需要注意类型,答案超过 int 范围。

[3] N皇后

出题人:林贝宁

使用深度优先搜索算法先写出代码,然后用代码跑出答案即可,最后答案为2279184。因为是填空题没有时间限制要求,所以不需要状态压缩优化也可以在2分钟内跑出来。

下面是我用JAVA写的状态压缩版dfs搜索的代码,语法大致同C++,供参考

import java.util.*;

public class Main {
    private static int n, allOne, answerNumber;
    // 三个变量分别表示:n个皇后问题, 一行n个位置棋盘全部赋1的状态, 解的数量

    public static void findAnswer(int[] chessBoard, int row, int nowState, int mainDiagonal, int deputyDiagonal) {
        if (row == n) //找到一组合法解
        {
            answerNumber ++ ;
            return;
        }
        int remainingColumn = allOne & (~ (nowState | mainDiagonal | deputyDiagonal));
        //剩余的还能填写的列 = n个1 - (已经填写的列+主副对角线被占用的位置)
        int nowPosition;
        // 当前需要填写的位置状态
        int nextState, nextMain, nextDeputy;
        //下一层搜索,列被占用的状态,主对角线占用状态,副对角线占用状态
        for (int i = 0; i < n; i++) {
            if (((remainingColumn >> i) & 1) == 0) //当前行第i个位置不能填
                continue;
            nowPosition = 1 << i; //第i个位置的位状态
            chessBoard[row] = i; //第row行,皇后放在第i列的位置上面
            nextState = nowState | nowPosition;
            //下一层搜索,列被占用的状态
            nextMain = (mainDiagonal | nowPosition) >> 1;
            //下一层搜索,主对角线占用状态
            nextDeputy = (deputyDiagonal | nowPosition) << 1;
            //下一层搜索,副对角线占用状态
            findAnswer(chessBoard, row + 1, nextState, nextMain, nextDeputy);
            //进入下一层搜索
        }
        return;
    }

    public static void main(String[] args) {
        Scanner readScanner = new Scanner(System.in);
        n = readScanner.nextInt();
        allOne = (int) (1L << n) - 1; 

        int[] chessBoard = new int[n]; //chessBoard[i]表示第i行,皇后摆放在当前行第几个位置
        findAnswer(chessBoard, 0, 0, 0, 0);
        if(answerNumber == 0)
        {
            System.out.println("No Solution"); //无解
            System.exit(0); //直接结束程序
        }
        System.out.println("There are a total of " + answerNumber + " answers"); //有多少组解
    }
}

签到题

[1] JMU最强蓝人

出题人 :林贝宁

输出YES即可。

#include <bits/stdc++.h>
int main()
{
    std::cout << "YES" << std::endl;
    return 0;
}

[2] 哪有赌狗一直输

出题人:吴杰

当市场价 s i s_i si 大于成本 X X X 时,累加概率。最后输出时特判。

#include<bits/stdc++.h>
using namespace std;
const int N = 104;

int p[N], s[N];

int main(){
    int n,X;cin>>n>>X;
    for(int i=1;i<=n;i++) cin>>p[i];
    for(int i=1;i<=n;i++) cin>>s[i];
    int ans=0;
    for(int i=1;i<=n;i++){
        if(s[i]>X) ans+=p[i];
    }
    if(ans==0) cout<<"shu ma le"<<endl;
    else if(ans==100) cout<<"ying ma le"<<endl;
    else cout<<ans<<endl;
    return 0;
}

[3] 元胞自动机

出题人:陈文静

题意

给一个长度为 n n n 的一维元胞自动机和初始序列,元胞的染色情况由元胞数值的奇偶决定,问 T = t T=t T=t 时刻元胞自动机的染色情况

思路

按题意模拟即可,直接累加会爆int类型,但溢出不影响奇偶性。

也可以对三个数奇偶性进行讨论,若出现三个奇数相加结果仍然奇数,两个奇数一个偶数相加结果为偶数,一个奇数两个偶数相加结果为奇数,三个偶数相加结果为偶数。序列初始值为 0 0 0 1 1 1 ,上面的讨论相当于是异或运算,因此也可以将加法改为异或。

状态更新取决于上个状态,因此不能直接用一维数组模拟,可以使用二维数组模拟,使用滚动数组对二维数组进行空间优化。

代码实现

C++ 实现
#include <bits/stdc++.h>
using namespace std;
int S[1001][101];
int main()
{
    int n, t;
    cin >> n >> t;
    for (int i = 1; i <= n; i++) 
        cin >> S[0][i]; /*初始状态*/
    for (int i = 1; i <= t; i++)
        for (int j = 1; j <= n; j++)
            S[i][j] = S[i - 1][j - 1] ^ S[i - 1][j] ^ S[i - 1][j + 1]; /*异或 / 加法都可以*/
    for (int i = 1; i <= n; i++)
        cout << (S[t][i] ? "B" : "W"); /*输出最终状态染色情况*/
    return 0;
}
Java 实现
import java.util.Scanner;

public class Main {
    public static void main(String[] args) {
        Scanner in = new Scanner(System.in);
        int n = in.nextInt();
        int t = in.nextInt();
        int[][] S = new int[1001][101];
        for (int i = 1; i <= n; i++) {
            S[0][i] = in.nextInt();
        }
        for (int i = 1; i <= t; i++) {
            for (int j = 1; j <= n; j++) {
                S[i][j] = S[i - 1][j - 1] ^ S[i - 1][j] ^ S[i - 1][j + 1];
            }
        }
        for (int i = 1; i <= n; i++)
            System.out.print(S[t][i] == 1 ? "B" : "W");
        in.close();
    }
}

Python 实现
n, t = map(int, input().split())

S = [[0 for i in range(0, 101)] for j in range(0, 1001)]
S[0] = [0]+list(map(int, input().split()))+[0]
for i in range(1, t+1):
    for j in range(1, n+1):
        S[i][j] = S[i-1][j-1] ^ S[i-1][j] ^ S[i-1][j+1]
for i in range(1, n+1):
    if S[t][i]:
        print("B", end='')
    else:
        print("W", end='')

简单题

[1] 酒馆战旗

出题人: 吴杰

瓶盖兑矿泉水炉石版,虽然游戏马上要寄了

因为 Z < Y Z<Y Z<Y,答案一定是下降的,直接模拟即可。

#include<bits/stdc++.h>
using namespace std;

int main(){
    int T;cin>>T;
    while(T--){
        int X,Y,Z;cin>>X>>Y>>Z;
        int ans=0;
        while(X>=Y){ // 能购买随从
            int t=X/Y; // 买入 t 个随从, 自动下取整
            X%=Y; // 剩余铸币, 写 X-=t*Y 也行
            ans+=t; // 统计答案
            X+=t*Z; // 把买入的 t 个随从卖出获得 t*Z 铸币
        }
        cout<<ans<<endl;
    }
    return 0;
}

[2] 博丽神社例大祭

题意

出题人:蔡培伟

在一个 n × n n \times n n×n 的矩阵内给定 k k k 个特殊点,问所有点到特殊点的最短距离的总和是多少。

设矩阵上两个点的位置为 ( x 1 , y 1 ) , ( x 2 , y 2 ) (x_1, y_1),(x_2,y_2) (x1,y1),(x2,y2) ,那么点与点之间之间的距离为 ∣ x 1 − x 2 ∣ + ∣ y 1 − y 2 ∣ |x_1 - x_2| + |y_1 - y_2| x1x2+y1y2

思路

知识点:多源 BFS 。

假设我们只有一个点 v v v ,从这个点开始进行 bfs ,就像类似于从一个着火点开始,逐步蔓延至周边的其他位置,搜索到的点顺序是按照其距离源点 v v v 的距离由近到远进行排序。

在这道题中有多个源点,我们只需要将这几个点加入 bfs 的队列,直接进行 bfs ,就能得到每个点到其最近源点的距离,累加起来就是答案了。

代码

c++ 代码。

#include <bits/stdc++.h>
using namespace std;
template <class T> constexpr T inf = std::numeric_limits<T>::max() / 2;
using ll = long long;

int main() {
	std::cin.tie(nullptr)->sync_with_stdio(false);
	int n, k;
	cin >> n >> k;
	vector a(n + 2, vector<bool>(n + 2));
	vector dis(n + 2, vector<int>(n + 2, inf<int>));
	for (int i{}; i <= n + 1; i ++) {
		a[i][0] = a[0][i] = a[n + 1][i] = a[i][n + 1] = true;  // 标记边界
	}
	queue<pair<int,int>> q;
	// 标记源点并加入队列中
	for (int i{}; i < k; i ++) {
		int x, y;
		cin >> x >> y;
		a[x][y] = true;
		dis[x][y] = 0;	// 源点距离初始化为 0
		q.emplace(x, y);
	}
	// 四个方向
	vector<pair<int,int>> D = {
		{-1, 0}, {1, 0}, {0, -1}, {0, 1}
	};
	// BFS
	while (!q.empty()) {
		auto [x, y] = q.front();
		q.pop();
		for (auto [dx, dy] : D) {
			int nx = dx + x, ny = y + dy;
			if (dis[nx][ny] == inf<int> && !a[nx][ny]) {
				dis[nx][ny] = dis[x][y] + 1;
				q.emplace(nx, ny);
			}
		}
	}
	// 统计答案
	ll ans{};
	for (int i = 1; i <= n; i ++) {
		for (int j = 1; j <= n; j ++) {
			ans += dis[i][j];
		}
	}
	cout << ans << '\n';
}

java 代码。

import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.Queue;
import java.util.Scanner;

class Info {
    Info() {}
    Info(int x, int y) { this.x = x; this.y = y; }
    public int x, y;
}

public class Main {
	static Scanner cin = new Scanner(System.in);
    static PrintWriter cout = new PrintWriter(System.out);
    public static void main(String[] args) {
        Solve();
        cin.close();
        cout.close();
    }
    public static void Solve() {
        int n = cin.nextInt(), k = cin.nextInt();
        int[][] dis = new int[n + 2][n + 2];
        for (int i = 1; i <= n; i ++) {
            dis[i][0] = dis[0][i] = dis[n + 1][i] = dis[i][n + 1] = 0;
            for (int j = 1; j <= n; j ++) {
                dis[i][j] = Integer.MAX_VALUE;
            }
        }
        Queue<Info> q = new LinkedList<>();
        ArrayList<Info> D = new ArrayList<>();
        D.add(new Info(-1, 0));
        D.add(new Info(1, 0));
        D.add(new Info(0, -1));
        D.add(new Info(0, 1));
        while (k --> 0) {
            int x = cin.nextInt(), y = cin.nextInt();
            dis[x][y] = 0;
            q.offer(new Info(x, y));
        }
        while (!q.isEmpty()) {
            var tmp = q.poll();
            int x = tmp.x, y = tmp.y;
            for (var dd : D) {
                int nx = x + dd.x, ny = y + dd.y;
                if (dis[nx][ny] == Integer.MAX_VALUE) {
                    dis[nx][ny] = dis[x][y] + 1;
                    q.offer(new Info(nx, ny));
                }
            }
        }
        long ans = 0;
        for (int i = 1; i <= n; i ++) {
            for (int j = 1; j <= n; j ++) {
                ans += dis[i][j];
            }
        }
        cout.println(ans);
    }
}

py代码。

import queue

inf = 1 << 30

def Solve() -> None:
    n, k = map(int, input().split())
    a = [[False] * (n + 2) for i in range(n + 2)]
    dis = [[inf] * (n + 2) for i in range(n + 2)]
    q = queue.Queue()
    for i in range(0, n + 2):
        dis[i][0] = dis[0][i] = dis[n + 1][i] = dis[i][n + 1] = 0
    for i in range(k):
        x, y = map(int, input().split())
        a[x][y] = True
        dis[x][y] = 0
        q.put((x, y))
    D = [
        (-1, 0), (1, 0), (0, -1), (0, 1)
    ]
    while not q.empty():
        x, y = q.get()
        for dx, dy in D:
            nx = x + dx; ny = y + dy
            if dis[nx][ny] == inf:
                dis[nx][ny] = dis[x][y] + 1
                q.put((nx, ny))
    ans = 0
    for i in range(1, n + 1):
        for j in range(1, n + 1):
            ans += dis[i][j]
    print(ans)
    return None

if __name__ == '__main__':
    Solve()

[3] 无所谓,我会出手

出题人:陈文静

题意

一天可以建造一台机器,若机器在第 x x x 天建造,第 x + 1 x+1 x+1 0 0 0 点运行,并于第 x + d + 1 x+d+1 x+d+1 0 0 0 点报废,建造机器时刻的取值范围为 [ 0 , + ∞ ) [0,+ \infin) [0,+)。给出 n n n 个不同的时刻,每个时刻都需要有至少 a a a 台机器同时工作,问是否存在一种方案建造机器使得对于给出的 n n n 个时刻至少都有 a a a 台机器同时工作,如果存在至少需要多少台。

思路

t t t 天建造的机器只在 [ t + 1 , t + d + 1 ) [t+1,t+d+1) [t+1,t+d+1) 时间段工作。

对于第 t i t_i ti 天,我们只需要检查 [ max ⁡ ( 0 , t i − d ) , t i − 1 ] [\max(0,t_i-d),t_i-1] [max(0,tid),ti1] 天建造的机器数量,如果数量不足 a a a ,可以利用贪心思想从后往前依次枚举可以建造的时刻补充机器至 a a a 台并标记补充建造的时刻(贪心:建造机器的时间尽可能靠后)。同时只需要满足 a ≤ d a \le d ad a ≤ t 1 a \le t_1 at1 一定存在解,当然也可以在枚举的过程中判断是否有解。

排除无解情况以后,可以考虑第 t i t_i ti 天, [ t i − 1 , t i ) [t_{i-1} ,t_i) [ti1,ti) 区间在考虑第 t i t_i ti 天之前不可能建造过机器,最坏情况是这个区间都建造机器才能满足第 t i t_i ti 天同时工作机器数量大于或等于 a a a。因此我们可以维护建造时刻的队列 q q q,队首建造时刻保持机器对 t i t_i ti 时刻有效,需要增加机器的数量即 max ⁡ ( 0 , a − q . s i z e ( ) ) \max(0,a-q.size()) max(0,aq.size()) ,且增加机器建造的时间为 [ t i − 1 , t i ) [t_{i-1},t_i) [ti1,ti) 区间从后往前连续的天数(贪心)。

本题定位为简单题,没有卡掉前一种做法,只需要想到贪心思路即可通过本题,且Java和Python(pypy3)使用第一种做法也可以通过。

代码实现给出C++两种做法实现、Java和Python第二种做法的实现。

当然本题输出 No 可以骗两分。虽然一般比赛会避免只输出一个 Yes / No 的情况,但是如果写不出正解,可以尝试写一些朴素算法或者判断一些特殊情况骗分 (仅限于有部分分数的比赛)。

代码实现

C++ 实现 (1)
#include <bits/stdc++.h>
using namespace std;
const int maxn = 1e6 + 5;
int T[maxn];
int main()
{
    int n, a, d;
    cin >> n >> a >> d;
    /*红色怪鱼的数量*/
    /*击败红色怪鱼所需同时工作机器的数量*/
    /*机器报废的天数*/
    bool flag = true; /*是否存在解*/
    int ans = 0;      /*答案统计*/
    for (int i = 1; i <= n && flag; i++)
    {
        int t, sum = 0; /*第i只红色怪鱼出现的时刻*/
        cin >> t;
        for (int j = 1; j <= d; j++) /*计算对时刻t有效的机器数量*/
        {
            if (t - j >= 0) /*t-j即建造机器的时刻*/
            {
                sum += T[t - j]; /*累积机器数量*/
            }
        }
        for (int j = 1; j <= d && sum < a; j++) /*对时刻t有效的机器数量不够增加机器*/
        {
            if (t - j < 0) /*无法继续建造*/
            {
                flag = false; /*无解*/
            }
            else if (!T[t - j]) /*t-j时刻没建造过机器*/
            {
                ans++;        /*建造一台机器*/
                sum++;        /*增加对时刻t有效的机器数量*/
                T[t - j] = 1; /*t-j时刻建造一台机器*/
            }
        }
        if (sum < a) /*机器数量仍然不够*/
        {
            flag = false; /*无解*/
        }
    }
    if (flag) /*输出答案*/
    {
        cout << "Yes\n";
        cout << ans;
    }
    else
    {
        cout << "No";
    }
    return 0;
}
C++ 实现 (2)
#include <bits/stdc++.h>
using namespace std;

int main()
{
    int n, a, d, t;
    cin >> n >> a >> d >> t;
    /*红色怪鱼的数量*/
    /*击败红色怪鱼所需同时工作机器的数量*/
    /*机器报废的天数*/
    /*第一只红色怪鱼到达的时间*/
    if (a > d || a > t) /*无解情况*/
    {
        cout << "No";
    }
    else
    {
        int ans = 0;  /*统计建造数量*/
        queue<int> q; /*建造时间队列*/
        for (int i = t - a; i < t; i++)
            q.push(i), ans++; /*处理第一只红色怪鱼所需机器*/
        for (int i = 1; i < n; i++)
        {
            cin >> t;                               /*对剩下n-1只红色怪鱼到达时间处理*/
            while (!q.empty() && q.front() + d < t) /*队列不空且队首建造时间对t时刻无效*/
                q.pop();                            /*弹出队首元素直到满足对t时刻有效*/
            int add = a - q.size();                 /*需要增加机器的数量*/
            for (int i = t - add; i < t; i++)       /*从后t-1时刻往前贪心建造机器,但维护队列需要从前往后添加*/
                q.push(i), ans++;                   /*新建机器*/
        }
        cout << "Yes\n"; /*输出答案*/
        cout << ans;     /*输出答案*/
    }
    return 0;
}
Java 实现
import java.io.PrintWriter;
import java.util.LinkedList;
import java.util.Queue;
import java.util.Scanner;

public class Main {
	static Scanner cin = new Scanner(System.in);
	static PrintWriter cout = new PrintWriter(System.out);
	public static void main(String[] args) {
		Solve();
		cin.close();
		cout.close();
	}
	public static void Solve() {
		int n = cin.nextInt(), a = cin.nextInt(), d = cin.nextInt(), t = cin.nextInt();
		if (a > d || a > t) {
			cout.println("No");
			return;
		}
		int ans = 0;
        Queue<Integer> q = new LinkedList<>();
		for (int i = t - a; i < t; i ++) {
			q.add(i);
			ans ++;
		}
		for (int i = 1; i < n; i ++) {
			t = cin.nextInt();
			while (!q.isEmpty() && Integer.compare(q.peek() + d, t) == -1) {
				q.poll();
			}
			int add = a - q.size();
			for (int j = t - add; j < t; j ++) {
				q.add(j);
				ans ++;
			}
		}
		cout.println("Yes");
		cout.println(ans);
	}
}
Python 实现
from collections import deque

def Solve() -> None:
    n, a, d = map(int, input().split())
    t = int(input())
    if a > d or a > t:
        print("No")
        return
    ans = 0
    q = deque()
    for i in range(t - a, t, 1):
        q.append(i); ans += 1
    for i in range(1, n, 1):
        t = int(input())
        while len(q) > 0:
            tmp = q.popleft()
            if tmp + d >= t:
                q.appendleft(tmp)
                break
        add = a - len(q)
        for j in range(t - add, t, 1):
            q.append(j); ans += 1
    print("Yes")
    print(ans)
    return None

if __name__ == '__main__':
    Solve()

中档题

[1] 数据结构大师

出题人:周鑫

60 60 60分做法

利用C++中的set直接进行模拟可以得到 60 60 60的分数。

但是为什么只有 60 60 60分?

科普一下set中“==”的逻辑:

  1. 若两个集合的大小不相同,则返回false
  2. 而后对两个集合同时进行遍历,进行逐个比对,若出现两个元素不相同,则返回false,若全部元素均相同,则返回true。

也就是说,在最坏情况下,两个集合进行比较的时间复杂度是 O ( n ) O(n) O(n)的。故用这个做法本题最坏的时间复杂度是 O ( n 2 ) O(n^2) O(n2),不能通过此题。

100 100 100分解法 1 1 1

回忆一下高中乃至小学学过的知识:如何判断两个数或两个式子相等?

一个显然的想法是:对两个式子做差,如果差值为 0 0 0,则两个式子相等。

我们利用这个思想来解决这个问题。

显然判断一个集合是否为空集是简单的:只要判断该集合大小是否为 0 0 0即可。

我们令集合 S S S
S = ( A ∪ B ) − ( A ∩ B ) S = (A \cup B) - (A \cap B) S=(AB)(AB)

其中 A , B A,B A,B为题意中所表示的两个集合

显然,若 S S S是空集,那么 A = B A=B A=B

( A ∪ B ) − ( A ∩ B ) = ∅ → ( A ∪ B ) = ( A ∩ B ) → A = B \begin{aligned} &(A \cup B) - (A \cap B) = \varnothing \\ \rightarrow &(A \cup B) = (A \cap B)\\ \rightarrow& A = B \end{aligned} (AB)(AB)=(AB)=(AB)A=B

考虑维护这个集合 S S S

如何维护? 看下面这个例子。

现在我们需要将数 x x x插入 A A A中,在插入前,会有以下两种情况中的其中一种发生

  1. x ∈ A x \in A xA
  2. x ∉ A x \not\in A xA

对于第一种情况 我们忽略即可。

那么对于第二种情况,则也有以下两种情况的其中一种发生

  1. x ∈ S x \in S xS
  2. x ∉ S x \not\in S xS

由于 x ∉ A x \not\in A xA,则如果第一种情况发生,则是 x ∈ B x \in B xB,按照 S S S的定义我们把 x x x S S S中移去;如果是第二种情况发生,则是 x ∉ B x \not\in B xB发生,则我们将 x x x插入 S S S中即可。

对于每次查询,只需要判断 S S S是否为空集即可。

时间复杂度为 O ( n log ⁡ n ) O(n\log n) O(nlogn)

#include <bits/stdc++.h>
using namespace std;
#define endl '\n'
int main()
{
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    int Q;
    cin >> Q;
    vector<set<int>> s(2);//s[0] 表示 A,s[1] 表示 B.
    set<int> S;
    while (Q--)
    {
        int op;
        cin >> op;
        if (op == 1 || op == 2)
        {
            op--;
            int x;
            cin >> x;
            if (s[op].count(x))
                continue;
            if (S.count(x))
                S.erase(x);
            else
                S.insert(x);
            s[op].insert(x);
        }
        else
        {
            if (S.empty())
                cout << "Yes" << endl;
            else
                cout << "No" << endl;
        }
    }
    return 0;
}

100 100 100分解法 2 2 2

回忆一下我们在 60 60 60分做法中遇到的困难:set直接比较的复杂度太高,无法直接比较。

而判断两个整数相等的时间复杂度是 O ( 1 ) O(1) O(1),那么我们自然而然就有一个想法:能否把一个集合“转换成一个整数”,然后进行比较?

在本题中想完美的解决这个问题是很困难的,幸运的是,在允许一定程度的错误的情况下,这个问题是很简单的。

考虑这样一个函数
f : S → N f: S \rightarrow \text{N} f:SN

它满足以下两个性质:

  1. A = B A=B A=B,则 f ( A ) = f ( B ) f(A) =f(B) f(A)=f(B)
  2. f ( A ) = f ( B ) f(A)=f(B) f(A)=f(B),则 A A A B B B大概率相等

用人话说, f ( S ) f(S) f(S)是一个哈希函数。

故我们只要对集合进行哈希,每次查询时判断二者的哈希值是否相等即可。

至于哈希函数的设计,有许多方法,这里不在赘述。

利用哈希,时间复杂度可以降到 O ( n ) O(n) O(n)

以下是参考代码

#include <bits/stdc++.h>
using namespace std;
using LL = long long;
#define endl '\n'
struct set_hash
{
    LL val;
    static const LL num1 = 114514, num2 = 1919810;
    static const LL mod = 12346789000;
    set_hash(LL val = 0) : val(val){};

    void insert(LL x)
    {
        LL num = (x + num1) * (x + num2);
        val = (val + num) % mod;
    }
    
    bool operator==(const set_hash &rhs) const {return (val == rhs.val);}
};
int main()
{
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    int Q;
    cin >> Q;
    vector<unordered_set<int>> s(2);
    vector<set_hash> h(2);
    while (Q--)
    {
        int op;
        cin >> op;
        if (op == 1 || op == 2)
        {
            op--;
            int x;
            cin >> x;
            if (s[op].count(x))
                continue;
            s[op].insert(x);
            h[op].insert(x);
        }
        else
        {
            if (h[0] == h[1])
                cout << "Yes" << endl;
            else
                cout << "No" << endl;
        }
    }
    return 0;
}

[2] 小学计算题

出题人:周鑫

题意

求数组长度为 n n n b b b的个数

∑ i = 1 n a i b i = K − a 0 \sum_{i=1}^{n} a_{i}b_{i}=K - a_{0} i=1naibi=Ka0
其中 b i ∈ { − 1 , 1 } b_{i} \in \{-1,1\} bi{1,1}

做法

01 01 01背包变形。

b i b_{i} bi只要两种决策( − 1 -1 1 1 1 1), 01 01 01背包也只有两种决策(取或不取)。

考虑动态规划。

d p [ i ] [ j ] dp[i][j] dp[i][j]为考虑到第 i i i个数,且当前值为 j j j的方案数,不难写出状态转移方程

d p [ i ] [ j ] = d p [ i − 1 ] [ j − a [ i ] ] + d p [ i − 1 ] [ j + a [ i ] ] dp[i][j] = dp[i-1][j - a[i]] + dp[i-1][j + a[i]] dp[i][j]=dp[i1][ja[i]]+dp[i1][j+a[i]]

第一个是选择了 + 1 +1 +1的决策,第二个是选择了 − 1 -1 1的决策。

显然答案为 d p [ n ] [ K − a [ 0 ] ] dp[n][K-a[0]] dp[n][Ka[0]]

但是直接这么做会有一个问题:下标会是负数。

有两种方案可以解决这个问题:

  1. 将第二维的下标加一些值使最小值也能大于 0 0 0(加偏移)。
  2. 利用 m a p map map来允许访问负下标,缺点是时间复杂度会多个 log ⁡ \log log

时间复杂度为 O ( n × ( n × m a x ( ∣ a i ∣ ) + K ) ) O(n\times (n\times \mathcal{max}(|a_i |)+ K)) O(n×(n×max(ai)+K))

值得一提的是这个过程可以利用滚动数组优化空间复杂度,但是在本题中并没有卡大家的空间复杂度。

以下是代码(使用滚动数组和刷表法,故写法可能跟上述描述有点不同)。

#include <bits/stdc++.h>
using namespace std;
constexpr int P = 998244353;
using i64 = long long;
// assume -P <= x < 2P
int norm(int x)
{
    if (x < 0)
     x += P;
    if (x >= P)
        x -= P;
    return x;
}
template <class T>
T power(T a, long long b)
{
    T res = 1;for (; b; b /= 2, a *= a){if (b % 2)res *= a;}return res;
}
struct Z
{
    int x;
    Z(int x = 0) : x(norm(x)) {}
    int val() const{return x;}
    Z operator-() const{return Z(norm(P - x));}
    Z inv() const{assert(x != 0);return power(*this, P - 2);}
    Z &operator*=(const Z &rhs){x = i64(x) * rhs.x % P;return *this;}
    Z &operator+=(const Z &rhs){x = norm(x + rhs.x);return *this;}
    Z &operator-=(const Z &rhs){x = norm(x - rhs.x);return *this;}
    Z &operator/=(const Z &rhs){return *this *= rhs.inv();}
    friend Z operator*(const Z &lhs, const Z &rhs){Z res = lhs;res *= rhs;return res;}
    friend Z operator+(const Z &lhs, const Z &rhs){Z res = lhs;res += rhs;return res;}
    friend Z operator-(const Z &lhs, const Z &rhs){Z res = lhs;res -= rhs;return res;}
    friend Z operator/(const Z &lhs, const Z &rhs){Z res = lhs;res /= rhs;return res;}
    friend std::istream &operator>>(std::istream &is, Z &a){i64 v;is >> v;a = Z(v);return is;}
    friend std::ostream &operator<<(std::ostream &os, const Z &a){return os << a.val();}
};
//利用结构体Z可以不写取模 实际上可以不用
const int bs = 3e4 + 2000;
int main()
{
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    int n, K;
    cin >> n >> K;
    vector<int> a(n + 1);
    for (int i = 0; i <= n; ++i)
        cin >> a[i];
    K -= a[0];
    vector<Z> dp(bs * 2);
    dp[bs] = 1;
    for (int i = 1; i <= n; ++i)
    {
        vector<Z> f(bs * 2);
        for (int j = 0; j < f.size(); ++j)
        {
            if (j + a[i] >= 0 && j + a[i] < bs * 2)
                f[j + a[i]] += dp[j];
            if (j - a[i] >= 0 && j - a[i] < bs * 2)
                f[j - a[i]] += dp[j];
        }
        dp = f;
    }
    cout << dp[bs + K];
    return 0;
}

动态规划的map实现代码

  • 以及验题人给定的带logmap做法(每一层都是跑不满的,最初的时限也可以过)
#include <bits/stdc++.h>

using namespace std;

constexpr int md = 998244353;

int T, n, m;
int k;

map<int, long long> dp[105];
int a[105];

int main()
{
    cin >> n >> k;
    ++ n;
    for(int i = 1; i <= n; i ++ )
        cin >> a[i];
    dp[1][a[1]] = 1;
    for(int i = 2; i <= n; i ++ )
    {
        for(auto [ans, num] : dp[i - 1])
        {
            dp[i][ans + a[i]] += num;
            dp[i][ans + a[i]] %= md;
            dp[i][ans - a[i]] += num;
            dp[i][ans - a[i]] %= md;
        }
    }
    cout << dp[n][k];
}

难题

[1] 导弹拦截特别版

出题人:周鑫

题意

给出一个长度为 n n n的数组 h h h b b b,找到一个长度为 k k k的序列 p p p,满足以下条件

  1. p 1 < p 2 < p 3 < ⋯ < p k p_{1} < p_{2} < p_{3} < \cdots < p_{k} p1<p2<p3<<pk
  2. h p 1 < h p 2 < h p 3 < ⋯ < h p k h_{p_{1}} <h_{p_{2}} <h_{p_{3}}<\cdots <h_{p_{k}} hp1<hp2<hp3<<hpk
  3. 最大化 ∑ i = 1 k b p i \sum_{i = 1}^{k} b_{p_{i}} i=1kbpi

只需输出 ∑ i = 1 n b p i \sum_{i = 1}^{n} b_{p_{i}} i=1nbpi即可。

满分做法 1 1 1

注意到 b i b_i bi的值很小,我们可以把这个问题转化一下。

对于每个导弹 我们可以把它拆成若干个数

具体为
a i × 10 + 0 , a i × 10 + 1 , a i × 10 + 2 , ⋮ a i × 10 + b i − 1 \begin{aligned} &a_{i}\times 10 +0 , \\ &a_{i}\times 10 +1 , \\ &a_{i}\times 10 +2 ,\\ &\vdots \\ &a_{i} \times 10 + b_{i} -1 \\ \end{aligned} ai×10+0,ai×10+1,ai×10+2,ai×10+bi1

按照原来顺序组合成一个新的数组 d d d

容易发现, d d d的最长上升子序列就是题目的答案。

时间复杂度为 O ( ( n + ∑ i = 1 n b i ) log ⁡ ( n + ∑ i = 1 n b i ) ) O((n + \sum_{i =1 }^{n} b_{i} )\log({n + \sum_{i =1 }^{n} b_{i} }) ) O((n+i=1nbi)log(n+i=1nbi))

参考代码

#include <bits/stdc++.h>
using namespace std;
using LL = long long;
int main()
{
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    int n;
    cin >> n;
    vector<LL> a(n), b(n);
    for (int i = 0; i < n; ++i)
        cin >> a[i];
    for (int i = 0; i < n; ++i)
        cin >> b[i];
    vector<LL> d;
    for (int i = 0; i < n; ++i)
    {
        a[i] *= 10;
        for (int j = 0; j < b[i]; ++j)
            d.push_back(a[i] + j);
    }
    vector<LL> v;
    LL ans = 0;
    for (int i = 0; i < d.size(); ++i)
    {
        if (v.empty() || v.back() < d[i])
            v.push_back(d[i]);
        else
        {
            auto it = lower_bound(v.begin(), v.end(), d[i]);
            *it = d[i];
        }
        ans = v.size();
    }
    cout << ans << endl;
    return 0;
}

满分做法 2 2 2

考虑动态规划

d p i dp_{i} dpi为从第 1 1 1个考虑到第 i i i个答案的最大值,容易写出状态转移方程

d p i = max ⁡ ( d p j + b i ) ( h i > h j ) dp_{i} = \max(dp_{j} + b_{i}) \quad (h_{i} > h_{j}) dpi=max(dpj+bi)(hi>hj)

利用离散化和线段树可以将时间复杂度优化到 O ( n log ⁡ n ) O(n\log n) O(nlogn), 这里不在赘述。

[2] Kth-Number

出题人:林贝宁

题目陈述

描述:把只包含质因子2、3和5的数称作贝贝数(Ugly Number)。例如6、8都是贝贝数,但14不是,因为它包含质因子7。 习惯上我们把1当做是第一个贝贝数。求按从小到大的顺序的第N个贝贝数。

分数设置

  • set做法,但是不会用给定的类 10 / 25 10/25 10/25
    • 出题人认为本题核心是考查算法思想,使用的类是次要,故给了大头的分数。
    • 但是,出题人给了这个类的过于详细的使用方法,以及很多提醒点,如果再只拿这个档次的分数,其实有点说不过去了。
    • 再者蓝桥允许查阅给定得C++API一定程度上考查了选手现场使用、学习文档的能力
    • (原本这个档次设置的为 4 / 25 4/25 4/25分)
  • set做法,且会用给定的类,不会离线, 14 / 25 14/25 14/25
  • set做法,且会用给定的类,会离线, 18 / 25 18/25 18/25
  • 会三指针做法,会用给定得类,不会离线, 14 / 25 14/25 14/25
  • 会三指针做法,会用给定得类,会离线,代码实现的常数大, 18 / 25 18/25 18/25
  • 会三指针做法,会用给定得类,会离线,代码实现的常数小,$ 25/25$分

算法一:质因数分解(暴力)

算法实现
  • 一个很朴素的做法
  • 1 ∼ ∞ 1 \sim \infty 1每次+1,一直枚举,直到找到地N个贝贝数为止
  • 那么还有一个待解决的问题,如何判断当前数字是不是贝贝数呢?
  • 我们总结一下贝贝数的性质:只能分解为3,5,7的如干次幂相乘的数,即设第 i i i个贝贝数为 u n u_n un,则 u n = 3 x × 5 y × 7 z u_n=3^x \times 5^y \times 7^z un=3x×5y×7z
  • 那么我们只需要通过质因数分解,判断他分解3,5,7后,是否为1,如果为1,则说明没有其他的因数,否则则有其他因数,那么他就不是一个贝贝数
复杂度分析
  • 时间复杂度 O ( u n ) O(u_n) O(un),其中 u n u_n un为第n个贝贝数的大小,因为贝贝数增长非常快,非常巨大,所以这是一个很差的复杂度,预期得分 0 0 0

算法二:集合/优先队列

思路引入
  • 我们试一下能否找到相邻贝贝数之间的规律,或者贝贝数生成的规律
  • 比较遗憾的是,我们通过模拟发现,相邻的贝贝数之间并没有规律,那么这题的另一个切入点,就是生成贝贝数
思路推进
  • 我们可以发现,对于 u n u_n un,它必然是由 u i ( i ∈ [ 1 , n − 1 ] ) u_i(i\in [1,n-1]) ui(i[1,n1])乘以3或5或7生成的
  • 如果对于 i i i也有 i > 1 i>1 i>1,那么必然也有 u j , ( j ∈ [ 1 , i − 1 ] ) u_j,(j \in [1,i-1]) uj,(j[1,i1])乘以3或5或7生成 u i u_i ui
  • 所以,如果知道前面n-1个贝贝数,我们可以每个数都乘以3,5,7,然后检查出里面跟前面n-1个贝贝数不重复的并且是最小的数,得到的便是第n个贝贝数
考虑复杂度
  • 不借助set,每次检查重复的复杂度为 O ( n ) O(n) O(n),每个贝贝数生成三个新的,最多有 ( n − 1 ) (n-1) (n1)个贝贝数,时间复杂度 O ( 3 n 2 ) O(3n^2) O(3n2)
  • 如果借助set去重,每次检查重复的复杂度为 O ( log ⁡ n ) O(\log n) O(logn),时间复杂度 O ( 3 n log ⁡ n ) O(3n \log n) O(3nlogn)
  • 取出最小值,如果借助堆的话,对于维护堆,每次插入一个数,花费 O ( log ⁡ ( 3 n ) ) O(\log(3n)) O(log(3n)),最多插入3n次,每次取出最小值,花费 O ( 1 ) O(1) O(1)
实现
  • 注意,此处,进入小顶堆的元素可能会有重复,比如($ 3\times 5$和 5 × 3 5\times 3 5×3),所以我们需要去重,这一点我们可以用STL容器中的set,内嵌红黑树,begin即是最小的元素,插入和删除的代价都是 O ( log ⁡ 2 n ) O(\log 2n) O(log2n)
  • 如果每个询问都再求解一次贝贝数,会造成大量的重复计算,我们离线处理,只需要计算所有询问中最大的那个 n n n,然后其余的答案也就顺便计算出来了
  • 此处没有离线计算,复杂度为 O ( T × n ) O(T\times n) O(T×n),可以拿到 14 / 25 14/25 14/25分,如果离线的话,复杂度为 O ( n log ⁡ n ) O(n\log n) O(nlogn)可以拿到 18 / 25 18/25 18/25
#include <bits/stdc++.h>
using namespace std;
/*


因为担心题解冗余代码太长了,
此处填上题目给定的struct Z和BigInt


*/
int t[11];
int main() {
    int q;
	cin >> q;
    int mx = 0;
    for(int i =1; i <= q;i ++ )
    {
        cin >> t[i];
        mx = max(t[i], mx); //离线,获取最大的询问
    }
    vector<BigInt> ans;
	set<BigInt> st; //堆的作用,同时起到去重的作用
	st.insert(1);
	while (ans.size() <= mx) {
		auto ret = *st.begin();
		st.erase(st.begin()); //弹出堆中最小值
		ans.push_back(ret);//获取新的贝贝数
		st.insert(ret * 3);
		st.insert(ret * 5);
		st.insert(ret * 7);
	}  
    for(int i =1; i <= q;i ++ )
		cout << ans[t[i] - 1] << '\n';
}

算法三:三指针做法+离线

算法思路
  • 我们会发现判断是否跟前面重复这个过程,以及维护小顶堆,会花费大量时间,不妨想一想能不能省略去这个过程?
  • 我们可以发现,如果已经知道[1~i]个贝贝数,那么将 u 1 ∼ u i u_1\sim u_i u1ui每个数都会乘以3,5,7再次放入一个队列中
  • 如果当前数是由 u n = u j × 3 u_n=u_j\times 3 un=uj×3得到的,那么下一个因为乘以3而得到的贝贝数必然是由 u j + 1 × 3 u_{j+1}\times 3 uj+1×3得到的(后面的数乘以3,必然大于这个数),对于5,7同理
  • 所以我们可以利用这个单调性维护三个指针,每个指针指向队列中的一个数,依次比较三个指针所指向的数所生成的新贝贝数,即可 O ( n ) O(n) O(n)得出第n个贝贝数
  • 即维护i,j,k指针,其中i,j,k分别为指向下一个因为乘以 3 , 5 , 7 3,5,7 3,5,7而得到的贝贝数的位置,我们就可以在三个指针所对应的数的乘以相应的数的运算结果中,找到下一个贝贝数
代码实现
  • 注意,下面的if,不能写成if-else,因为可能出现v[i]*2==v[j]*3这样的情况,这种情况我们就需要同时移动i,j
  • 否则,数组v中就可能出现重复的元素,导致错误答案
  • 如果不离线处理,依旧只能拿 14 / 25 14/25 14/25分,离线处理,若常数大只能拿 18 / 25 18/25 18/25分,常数小可以拿 25 / 25 25/25 25/25满分。题目给出了可能被卡常的多数情况,可谓是非常良心了
  • (最后我还是难以理解 O ( n log ⁡ n ) O(n\log n) O(nlogn)居然被勋总给卡过去了,“真·卡常大师”,跑的比标程还快)
#include <bits/stdc++.h>
using namespace std;
/*


因为担心题解冗余代码太长了,
此处填上题目给定的struct Z和BigInt


*/
int main()
{
    int i = 0, j = 0, k = 0;
    BigInt now;       // i,j,k分别为指向下一个*3,*5,*7可能成为下一个贝贝数的数的位置的指针
    vector<BigInt> v; //放入1个1
    v.push_back(BigInt(1));
    int idx = 3e5;
    BigInt ti, tj, tk;
    while (v.size() < idx)
    {  // v中的数量为为idx时候,停止循环   
        ti = v[i] * 3;
        tj = v[j] * 5;
        tk = v[k] * 7;          
        now = min(ti, min(tj, tk)); //三个指针运算的结果中找,下一个贝贝
        v.push_back(now); //将下一个贝贝数入队
        if (ti == now)
            i++; //下一个贝贝数可以由v[i]*3得到,则i指针后移
        if (tj == now)
            j++; //下一个贝贝数可以由v[j]*5得到,则j指针后移
        if (tk == now)
            k++; //下一个贝贝数可以由v[k]*7得到,则k指针后移
        //此处不能写if -else ,因为可能存在v[i]*3==v[j]*5这种情况
        //那么在下一次循环中,v[j]*3就会被再次选中,这样就会造成v中有重复元素出现
    }
    int T, x;
    cin >> T;
    for (int t = 1; t <= T; t++)
    {
        cin >> x;
        cout << v[x - 1] << '\n';
    }
}

压轴题:Kth-Wave

出题人:林贝宁

题目陈述

大意:定义波浪形序列为:序列中间的每个数都大于他的相邻的数或者小于他相邻的数。大小定义为字典序大小,求长度为n的序列中第k个波浪型的序列。

算法一:朴素算法(暴力)

算法思路

  • 一个很显然的思路,就是暴力枚举,字典序递增算出每一个序列,直到第k个
  • 开一个vector来记录当前的序列,第i层代表当前要填写的是第i个数字,那么递归边界就是n+1层(前面n个数字都已经填写完毕)
  • 那么我们该如何按字典序搜索?对于同一个位置填写的i,下一个位置如果填写的下降的,显然比上升的字典序来的小,所以应该先搜索下降的,再搜索上升的
  • 如果确定了前两个数的关系,整个序列的山顶和山谷的位置也就确定了,只需要定义一个f_inc不断在0,1翻转就行了

代码实现

typedef long long LL;
typedef vector<int> vci;
#define pb push_back
const int N = 22;
class Solution
{
public:
	bool vis[N], findAns;
	vci ans;
	LL num;
	void dfs(int now, int last, bool f_inc, int &n, LL &k)
	{
		if (now == n + 1)//获得一个合法的序列
		{
			num++;
			if (num == k)//需找到答案
			{
				findAns = 1;
				return;
			}
			return;
		}
		if (!f_inc)
		{ //当前位置是山顶
			for (int i = last + 1; i <= n; i++)
			{
				if (!vis[i])//如果i未使用
				{
					ans.pb(i);//记录
					vis[i] = 1;//标记已经使用
					dfs(now + 1, i, f_inc ^ 1, n, k);//下一个位置跟当前位置的f_inc相反
					if (findAns)
						return;
					vis[i] = 0;
					ans.pop_back();//删除i
				}
			}
		}
		else
		{
			for (int i = 1; i < last; i++)
			{ //当前位置是山谷
				if (!vis[i])//i未被使用过
				{
					ans.pb(i);//记录
					vis[i] = 1;//标记已经使用
					dfs(now + 1, i, f_inc ^ 1, n, k);//下一个位置跟当前位置的f_inc相反
					if (findAns)
						return;
					vis[i] = 0;//还原
					ans.pop_back();//删除I
				}
			}
		}
		return;
	}
	vci stick(int n, LL k)
	{
		ans.clear();
		num=0;
		findAns=0;
		memset(vis, 0, sizeof vis);
		for (int i = 1; i <= n; i++)
		{
			ans.push_back(i);//记录
			vis[i] = 1;
			dfs(2, i, 1, n, k); //第一个位置是山顶,下一个位置是山谷(f_inc==1)
			//因为对于同样一个i,下一个位置如果越小,则字典序更小
			//所以下一个位置优先是山谷,f_inc=1
			if (findAns)//如果找到答案则返回
			{
				return ans;
			}

			dfs(2, i, 0, n, k); //第一个位置是山谷,下一个位置是山顶(f_inc==0)
			//搜索下一个位置是山顶的情况,即f_inc=0
			if (findAns)
				return ans;
			vis[i] = 0;
			ans.pop_back();//将尾巴弹出
		}
		return {};
	}
};

复杂度分析

  • 时间复杂度,对于第一个位置上面都填写的i,综合开头上升和开头下降来看,比他小的所有数,和比他大的所有数,都会被枚举一遍,对于第j个位置类似,已经选取j个数字,剩下的n-j个数字都会在第j+1个位置枚举一遍,故时间复杂度为 O ( n ! ) O(n!) O(n!)
  • 空间复杂度,定义了动态数组ans,和数组vis,为 O ( n ) O(n) O(n)

算法二:数位DP+set维护

算法思路

  • 显然上述算法还是会TLE的,所以我们仍然需要优化
  • 做题的时候,如果我们想到了上述的暴力写法并且打了出来,那么我们可以根据已有的代码,打表找规律
  • 约定:开头是递增的称为上升序列,否则称为下降序列
  • 如果在长度为3的上升序列 1 , 3 , 2 {1,3,2} 1,3,2前面加上4,那么就得到了长度为4的下降序列。
  • 我们不妨大胆猜测,长度为n-1的上升序列,是否存在着某种转换,可以变为长度为n的下降序列?
  • 下面我们思路继续推进

思路推进

打表
  • 我们可以打表(暴力或者自己写)得到以下的序列
  • 长度为4的波浪形序列
1 3 2 4 
1 4 2 3 
2 1 4 3 
2 3 1 4
2 4 1 3
3 1 4 2
3 2 4 1
3 4 1 2
4 1 3 2
4 2 3 1
  • 还有长度为5的
1 3 2 5 4 
1 4 2 5 3 
1 4 3 5 2 
1 5 2 4 3 
1 5 3 4 2 
2 1 4 3 5
2 1 5 3 4
2 3 1 5 4
2 4 1 5 3
2 4 3 5 1
2 5 1 4 3
2 5 3 4 1
3 1 4 2 5
3 1 5 2 4
3 2 4 1 5
3 2 5 1 4
3 4 1 5 2
3 4 2 5 1 
3 5 1 4 2
3 5 2 4 1
4 1 3 2 5
4 1 5 2 3
4 2 3 1 5
4 2 5 1 3
4 3 5 1 2
4 5 1 3 2
4 5 2 3 1
5 1 3 2 4
5 1 4 2 3
5 2 3 1 4
5 2 4 1 3
序列的变换——状态转移方程
  • 约定: P ( l e n , i , f ) P(len,i,f) P(len,i,f)代表长度为 l e n len len i i i开头的波浪形序列, f = 1 f=1 f=1为上升序列, f = 0 f=0 f=0为下降序列
  • 此处我先给出下降序列的状态转移方程
    d p n , i , 0 = ∑ j = 1 i − 1 d p n − 1 , j , 1 dp_{n,i,0}=\displaystyle \sum_{j=1}^{i-1} dp_{n-1,j,1} dpn,i,0=j=1i1dpn1,j,1
  • 再看我的解释,应该就更好理解 P ( n − 1 , j , 1 ) P(n-1,j,1) P(n1,j,1)如何变换到 P ( n , i , 0 ) P(n,i,0) P(n,i,0),其中 j < i j<i j<i
  • 我们假如在 P ( 4 , 1 , 1 ) P(4,1,1) P(4,1,1)前面加上一个2,如
    {1,3,2,4}-->{2,1,3,2,4}那么他是不是一个长度为5的序列?
  • 当然我们还得把原本的那个2给换成5,就变成了{2,1,3,5,4},肯定有读者想问显然这依旧不是一个波浪形序列?
  • 对的,所以还需要再变换{2,1,3,5,4}-->{2,1,5,3,4}将5和3、4中小的那个交换,这样就得到了一个下降序列
  • 肯定有同学想问,为什么要跟小的那个交换,就不能直接换成{n,最小,次小}的格式吗,我们看下面的例子
{1,3,2,4}-->{2,1,5,3,4}
{1,4,2,3}-->{2,1,4,3,5}
  • 如果我们按照上述的同学的方法来做的话,显然第二个序列和第一个序列就会映射到同一个 P ( 5 , 2 , 0 ) P(5,2,0) P(5,2,0),就不符合1对1的映射
  • 接下来我们来总结一下变换的步骤
  1. 将i放在最前面
  2. 将原本的i改为n
  3. 因为n必然是最大的数,所以要使他变为山峰,将n跟他左右中较小的数交换
  4. (如果n在最右边就跟左边那个数交换)
  • 故所以对于所有 j < i j<i j<i的数,都可以从 P ( n − 1 , j , 1 ) P(n-1,j,1) P(n1,j,1)变换到 P ( n , i , 0 ) P(n,i,0) P(n,i,0),即状态转移方程为
    d p n , i , 0 = ∑ j = 1 i − 1 d p n − 1 , j , 1 dp_{n,i,0}=\displaystyle \sum_{j=1}^{i-1} dp_{n-1,j,1} dpn,i,0=j=1i1dpn1,j,1
上升序列的DP方程
  • 此处依旧先给出dp方程
    d p n , i , 1 = ∑ j = i n − 1 d p n − 1 , j , 0 dp_{n,i,1}=\displaystyle \sum_{j=i}^{n-1} dp_{n-1,j,0} dpn,i,1=j=in1dpn1,j,0
  • 理解了下降序列的状态转移方程,现在理解上升序列的状态转移方程应该容易一些
  • 下面我们分类讨论j的情况
对于j==i的变换方式

2 1 4 3-->2 5 1 4 3,对于P(n-1,i,0),只需要在i后面添加上n,因为n必然是最大的,所以也就变成了上升序列

对于j>i,且i的原位置是山顶
  • 我们在j前面加上i,{3,4,1,2}-->{2,3,4,1,2}
  • 再把原本的2换成5,因为2原本就是山顶,故换完之后无需变换,{2,3,4,1,2}-->{2,3,4,1,5}
对于j>i,且i的原位置是山谷
  • 因为n比所有数都要打,故换完之后需要调整
  • 调整方式跟下降序列的调整方式一样
  • {3,2,4,1}-->{2,3,2,4,1}-->{2,3,5,4,1}-->{2,5,3,4,1}

故每一个 P ( n − 1 , j , 0 ) P(n-1,j,0) P(n1,j,0)都可以变换为唯一一个 P ( n , i , 1 ) P(n,i,1) P(n,i,1),其中 i ≤ j ≤ n − 1 i\le j\le n-1 ijn1,即状态转移方程为 d p n , i , 1 = ∑ j = i n − 1 d p n − 1 , j , 0 dp_{n,i,1}=\displaystyle \sum_{j=i}^{n-1} dp_{n-1,j,0} dpn,i,1=j=in1dpn1,j,0

再次推进

  • 现在我们已经得知dp方程如下:
    d p n , i , 0 = ∑ j = 1 i − 1 d p n − 1 , j , 1 dp_{n,i,0}=\displaystyle \sum_{j=1}^{i-1} dp_{n-1,j,1} dpn,i,0=j=1i1dpn1,j,1
    d p n , i , 1 = ∑ j = i n − 1 d p n − 1 , j , 0 dp_{n,i,1}=\displaystyle \sum_{j=i}^{n-1} dp_{n-1,j,0} dpn,i,1=j=in1dpn1,j,0
  • 接下来我们就是利用dp方程来求解答案了,因为是字典序递增的,且第k个序列必然存在,所以我们可以遍历找到第个字典序开头的数字是哪一个
  • 接下来我们要寻找的长度减少了1,我们也知道n-1对应的dp方程,但是已经使用过一个数了,里面的数不一定是1-n怎么办?
  • 我们可以理解成一种哈希映射,将他们排个序,依次映射到1-n,序列的个数依旧不变
  • 既能排序又能记录去掉的数,显然这个容器,set无疑

复杂度分析

  • 时间复杂度,求解dp数组为 O ( n 2 ) O(n^2) O(n2),求解答案序列的第i个数字为 O ( n ) O(n) O(n),总共有n个数字,求解答案序列总得为 O ( n 2 ) O(n^2) O(n2),故整个算法的时间复杂度为 O ( n 2 ) O(n^2) O(n2)
  • 空间复杂度,定义了上升和、下降和为 O ( n ) O(n) O(n),定义了答案序列为 O ( n ) O(n) O(n),定义了dp数组为 O ( n 2 ) O(n^2) O(n2),总得为 O ( n 2 ) O(n^2) O(n2)

代码实现

C++

 #include <bits/stdc++.h>
using namespace std;

typedef long long LL;

int T, n, m;
typedef vector<int> vci;
const int N = 22;

LL dp[N][N][2];
//归类一下,序列可以分为有两种
// dp[n][k][0,1]代表序列长度为n位,首位是k,
//先下降(0表示)或先上升(1表示)的序列数量
LL decSum[N], incSum[N];
vci solve(int n, LL k)
{
    incSum[0] = 0;
    dp[1][1][0] = dp[1][1][1] = 1;
    //因为要考虑长度为len时,
    //对于len-1很多状态会改变,很多地方可以加入新的数len
    //所以借助辅助数组inc,incSum
    for (int len = 2; len <= n; len++)
    {
        decSum[len] = 0;
        for (int i = 1; i < len; i++)
        {
            incSum[i] = incSum[i - 1] + dp[len - 1][i][1];
            // incSum代表长度为len-1的序列中,开头为1~i的上升序列的数量的前缀和
        }
        for (int i = len - 1; i >= 0; i--)
        {
            decSum[i] = decSum[i + 1] + dp[len - 1][i][0];
            // decSum代表长度为len-1的序列中,开头为i~len-1的下降序列的数量的后缀和
        }
        for (int i = 1; i <= len; i++)
        {
            dp[len][i][0] = incSum[i - 1]; //下降序列的数量,等于1~i-1的前缀和
            dp[len][i][1] = decSum[i];     //上升序列的数量,等于k~len-1对的后缀和
        }
    }
    int last;   //记录上一个位置填写的是set中第几小的数字
    set<int> s; //记录哪些数字被用过了
    vci ans;    //储存答案
    for (int i = 1; i <= n; i++)
        s.insert(i);
    bool f_inc;
    for (int i = 1; i <= n; i++)
    {
        //此处应该先比较下降序列的,再比较上升序列的
        //顺序不能调换,字典序原因
        if (dp[n][i][0] < k)
        {                     //说明还不在范围内,此处我们也可以用一个sum累加然后和k比较
            k -= dp[n][i][0]; //继续缩小范围
        }
        else
        {
            last = i;
            ans.push_back(i); //放入答案中
            f_inc = 1;        //下一个位置是山顶
            s.erase(i);       //从维护的set中删除i,表示已经被用过了
            break;
        }
        if (dp[n][i][1] < k)
        {
            k -= dp[n][i][1];
        }
        else
        {
            last = i;
            ans.push_back(i); //放入答案中
            f_inc = 0;        //下一个位置是山谷
            s.erase(i);       //从维护的set中删除i,表示已经被用过了
            break;
        }
    }
    int idx;
    //上升代表当前位置是山谷,下降代表当前位置是山顶
    //长度逐渐减小的时候,dp数组中代表的1-n就可以理解成为离散化后的结果
    //可以理解成为哈希映射后的结果
    for (int len = n - 1; len >= 1; len--)
    {
        if (f_inc)
            idx = 1; //如果当前位置是山谷,则从1开始枚举
        //实际枚举区间为[1,last],但是因为必然存在,故i到达len之前就已经break
        else
            idx = last; //如果当前位置是山顶,则从last开始枚举
        //实际枚举区间为[last,len]
        //之前的last已经被删除了
        for (int j = idx; j <= len; j++)
        {
            if (dp[len][j][f_inc] < k)
                k -= dp[len][j][f_inc]; //继续缩小范围,分而治之
            else
            {
                auto it = s.begin();
                for (int q = 1; q < j; q++)
                    it++; //因为迭代器不能直接+(j-1),故找set中第j小的数字得一步一步找
                last = j; //对于下次来说,上次找的是第j小的数
                ans.push_back(*it);
                s.erase(it);
                break;
            }
        }
        f_inc ^= 1; //下一个位置,跟当前位置相反
    }
    return ans;
}

int main()
{
    int n;
    LL k;
    cin >> n >> k;
    vci ans = solve(n, k);
    for (int i = 0; i < ans.size(); i++)
    {
        if (i > 0)
            cout << ' ';
        cout << ans[i];
    }
}

python

此处写了实现类,需要选手自己调用

class Solution:
    def stick(self, n, k):
        inc = []
        ans = []
        now = 0
        dec =[[0 for i in range(n + 1)] for j in range(n + 1)]#python不能用连环等号
        #如果此处用连续等号,后面的dp数组会有问题
        inc = [[0 for i in range(n + 1)] for j in range(n + 1)]  # n+1个n+1个0,二维数组
        inc[1][1] = 1
        dec[1][1] = 1  # 初始长度为1
        vis = [0 for i in range(n + 1)]
        for Len in range(2, n + 1):  # 长度从2到n

            for i in range(1, Len + 1):  # 开头的数字从1到Len
                for m in range(1, i):  # 下降由上升1-(i-1)的和转移过来
                    dec[Len][i] += inc[Len - 1][m]
                for m in range(i, Len):  # 上升由下降i-(Len-1)的和转移过来
                    inc[Len][i] += dec[Len - 1][m]
        for i in range(1, n + 1):  # i从1到n,当前需要枚举的位置
            m = 0
            now = 0
            Len =n-i+1#剩余需要枚举的长度
            for j in range(1, n + 1):
                if (not vis[j]):  # 没有访问过
                    m += 1#相当于C++中的set来储存
                    #第i层计算ans中的第i个数,下标为ans[i-1]
                    if i == 1:
                        now = inc[Len][m] + dec[Len][m]
                    elif (j > ans[i - 2] and (i == 2 or ans[i - 2] < ans[i - 3])):#当前位置是山顶,即开头递减
                        now=dec[Len][m]
                    elif (j<ans[i-2] and (i==2 or ans[i-2]>ans[i-3])):#当前位置是山谷,即开头是递增
                        now=inc[Len][m]

                    if k<=now:
                        vis[j]=1#这个数被使用过了
                        ans.append(j)#放入答案
                        break
                    else:
                        k-=now
        return ans
  • 8
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值