DeepSeek的出现为技术方案的编写带来重大变革,释放了方案编写的焦虑。面对没有思路、缺少参考文献的窘境,DeepSeek能够快速提供具有逻辑的提纲和丰富的参考文献,指引我们突破认知边界,又快又好的完成方案。但同时面临内容合理性欠佳和错误文献的AI幻觉现象,需要我们在使用的过程中仔细甄别,从而更好的使AI工具融入我们的工作与生活。
DeepSeek释放了技术方案编写的焦虑
从大纲自动生成到内容扩充,DeepSeek可以在很短时间内一气呵成输出一篇方案,让你告别写方案的焦虑。一直以来写技术方案对于我来讲最难的就是思路和参考资料,尤其编写那些不熟悉领域的方案。利用DeepSeek之后,它可以一键生成提纲为你提供思路,还可以自动对提纲进行扩充,并在相应的地方引用文献,这样你就可以借鉴其提纲,并顺着它的文献进行学习,对生成的方案进行完善,可谓省时省力。不像以前苦思幂想、不停的查资料,始终不知道从何处下笔,到交作业的时候却迟迟拿不出东西,焦虑、恐慌、无助。用了它我甚至产生了一种每一次与AI交流的成果都应当保存下来的想法。
我在DeepSeek中输入“帮我根据边坡雷达监测数据处理、分析、预警系统主要功能分析生成大纲”,DeepSeek立即输出如下提纲,包含数据采集与处理、智能分析模块、预警与响应甚至还有典型应用验证,非常齐全该有的基本上都有了,我们可以以此为起点进行调整从而完成方案。
关键还不止于此,继续输入“请将针对边坡雷达在露天矿边坡监测中的应用将以上大纲扩充为一篇完整的技术方案”,你将会更为惊讶!一篇“完整”的技术方案将呈现在你眼前。项目背景与行业需求、系统架构与关键技术、工程实施与验证、应用案例与效益分析,感觉你能想到的它有,你想不到的它也有。先不看内容,单就提纲而论,是不是跟主题挺贴切,一个较为满意的逻辑框架初具规模。
当方案写作遇上认知坍缩,DeepSeek指引我们突破认知边界
DeepSeek对于写技术方案的最大的帮助是为你提供一个方向性的蓝图,在此基础上有类似的提纲结构供你参考和与之匹配的参考文献,你可以沿着DeepSeek的思路进行调整和优化,最终完成一篇属于你自己的方案,同样用DeepSeek不同的人会有不同的成果。
提供类似的提纲结构供参考。写方案最主要的是提纲,提纲是整篇方案的灵魂,有了提纲就可以逐步扩充、编写内容。面对熟悉的领域我们常常为最优的提纲而琢磨不定,面对不熟悉的领域我们更是纠结,总是想找一个相关的、非常贴合的来参考。现在DeepSeek可以快速的为我们提供一份苦苦寻觅的模板,如果不满意可以继续添加限定词让它重新生成,为我们解决了方案最初的构思、思路问题。
提供与主题紧密相关的文献。过去我们编写技术文件(特别是不熟悉的领域)需要花费很大的精力查阅文献,通过阅读大量的文献获取我们所需知识点,在理解、消化的基础上进行文档编写。我们漫无目标检索到的文献,有些有帮助、有些帮助甚小,常常读完一篇文献发现仅有一段话或几句话是有用的,有的甚至毫不相关。如今DeepSeek在很短时间内输出的答案里,将与主题相关的各类参考资料引用到合适的位置,并且为我们组织好了语言,我们仅需要点击即可浏览,大大提升了文献的检索速度和有效性,节省了盲目检索文献的时间。
用了DeepSeek编写技术方案最大的感受就是,AI强大的文献检索能力和逻辑推理能力极大的开阔了我的学术视野,能为你提供常人无法想象的思路及对应的参考文献。但事实真的止于此吗?你以为的方案终点,不过是一篇方案真正的起点,DeepSeek为你做的只是开始。因为你的真正需求并未被DeepSeek理解,DeepSeek直接输出的方案存在逻辑合理性和编造参考文献的问题,需要我们多加注意,避免产生负面影响。
现阶段利用DeepSeek的挑战——AI幻觉
逻辑与内容合理性的判别,有时候AI会把相关的内容给你,但实际上并不是你真正需要的,因为它能提供给你的要么是它知道的,要么是它能够从网上找到的。例如我输入“边坡雷达监测数据成果与三维地形数据配准的算法”,DeepSeek会输出空间映射方法(球体-网格映射、相位信息合成)和自适应配准(动态参数优化、多传感器融合)算法,细看其参考文献会发现,参考文献[3](https://baijiahao.baidu.com/s?id=1824389030000839684&wfr=spider&for=pc)和[4](http://wttyck.com/view/68.html)是边坡雷达的产品介绍和参考文献[5]《边坡雷达变形图与航测模型配准方法及应用》、[1]《基于边坡雷达监测数据的三维地形数据融合技术研究》是论文。球体网络映射、相位信息合成为雷达监测数据处理过程中用到的算法,动态参数优化在其对应的两篇文献中均未找到对应的描述;《基于边坡雷达监测数据的三维地形数据融合技术研究》主要采用的是多方位角融合方法,而在研究背景中有介绍多传感器融合优越性的描述。这说明AI确实能够将参考文献中的内容引用到你需要的地方,但是是否妥当确实值得提问者去斟酌、推敲。
错误文献的甄别,有时候AI会为你编造文献,如果不加甄别就将其放入你的方案中其后果也是非常严重的。我在询问DeepSeek关于“边坡雷达意外断电数据续传”的问题时,回答的第一句就是“根据《煤矿边坡监测系统技术要求》(AQ 1098-2020)及露天煤矿特殊工况”,但实际查询时《煤矿边坡监测系统技术要求》(AQ 1098-2020)这个规范是不存在的。虽然这属于一种偶然现象,甚至当你将相同的问题第二次询问DeepSeek的时候,其回答与第一次答案完全不同,不再引用那个不存在的文献,这便是产生了AI幻觉现象。但是如果发生在某些情况下其后果是非常严重的,如网上“一篇不存在的文献被引用了将近400次!”的问题。我们需要对AI回答中的参考文献要格外注意,进行验证、核实之后方可使用,这样才能确保结果的正确,现阶段人要为AI把关。
我们如何使用AI才能不被其主载
现阶段AI虽然已经很强大了,但仍旧在学习和进步的路上,我要对AI结果进行核验、慎重使用。AI如同一个小孩,在细分领域它知道的也是有限的,需要我们根据自己的知识和实际情况进行纠正,以更好的为我们服务,同时AI也会从这个过程中逐渐成长为知识全面的智能体。
理想的状态是,我们清楚地知道自己需要什么,并且能够让AI知道我们需要它为我们做什么,当它提交给我们答案的时候,我们能判定答案是否正确。这才是人与AI共舞的最高标准。为了赶在AI足够强大前我们能够将它作为一种很好的工具,而不是让AI主载我们。在AI不断学习进步的同时,我们也需要进步,学习如何使用AI,如何判别AI答案中不合理的地方,从而利用它有利的一面。如武侠小说上写的AI是屠龙宝刀,我们只有打通任督二脉才能刀随念动、人刀合一、斩因果于无形。