遇事不决,勾股定理

7850400ed7eb8f1ebf2fa636c1487de2.png

方程是数学、科学和技术的命脉。

方程也是出了名地吓人。斯蒂芬·霍金的出版商告诉他,《时间简史》里每增加一个方程,图书销量就减半一次,E = mc2——这个方程砍掉,《时间简史》能再多卖1000 万本。

但在小学生的作业本上,一排排的等号等待着孩子们的思考,这些等号都是曾经帮助过我们的烛火。

在科学论文里,每一个等号都勇敢地把整个人类文明向前推动了一小步,这些等号是当下正在帮助我们的微光。

在《改变世界的17个方程》这本书里,作者伊恩·斯图尔特带着我们回忆了人类历史上最重要的17个等号。有些等号建立了数量和空间的基本关系,有些等号教会我们用更多的维度看待世界的变化,有些等号指示给我们通往未来生活的路径。17个等号,就是人类一路走来的17个地标、17座丰碑和17盏灯。

《改变世界的17个方程》

[英] 伊恩•斯图尔特

译者:劳佳

“直角三角形中,两条直角边长度的平方之和,等于斜边长度的平方。a2+b2=c

这是连小学生都知道的勾股定律,又叫毕达哥拉斯定理。

cac8c05c0102004719f146db3927ba06.png

它告诉我们什么?

直角三角形的三个边之间有什么关系。

它为什么重要?

提供了几何和代数之间的重要联系,使我们能够根据坐标计算距离。它也催生出了三角学。

它带来了什么?

测绘、导航,以及较近代出现的狭义和广义相对论——现有最好的关于空间、时间和重力的理论。

1

河马上的婆娘

在公元前 570 年左右,毕达哥拉斯出生在爱琴海东部的希腊萨摩斯岛。他是一位哲学家和几何学家。我们对他的生活所知甚少,而且信息都来自很久之后的记述,其历史准确性存疑,但关键事件很可能是对的。公元前 530 年左右,他搬到古希腊殖民地克罗顿(今意大利)。他在那里创立了一个哲学宗教团体——“毕达哥拉斯学派”,他们相信宇宙是基于数字的。时至今日,其创始人的名声就来自以他的名字命名的定理。

关于毕达哥拉斯定理有一个非常流行的笑话,是一个关于“河马上的婆娘”(squaw on the hippopotamus)的糟糕的“谐音梗”。这个笑话在网上随处可见,但是真正的源头就不太可考了。还有关于毕达哥拉斯的漫画、T恤和希腊邮票

8ca4a885736c6d0c8fd3c38d18749329.png

尽管说了这么多,我们并不知道毕达哥拉斯是否真的证明了他的定理。事实上,我们根本不知道这是否是他的定理。它完全有可能是毕达哥拉斯的一个仆从,或某个古巴比伦或苏美尔的抄写员发现的。但人们把它归功于毕达哥拉斯,他的名字就流传下来了。无论其起源如何,这个定理和它的结果对人类历史产生了巨大的影响。它们的的确确拓展了我们的世界。

2

直角三角形:三角学宇宙的起源

我们在现实生活中遇到的许多三角形都不是直角三角形,因此方程的直接应用似乎有限。但是,任何三角形都可以分割成两个直角三角形,而任何多边形都可以分割成若干三角形。因此,直角三角形是关键:它们证明了三角形的形状与其边的长度之间存在有用的关系。从这一见解中发展出来的学科是三角学——“三角形的测量”。

526fd14e6690198c8868f7abac42cf45.png

直角三角形是三角学的基础,特别是它决定了基本的三角函数:正弦、余弦和正切。这些名称源于阿拉伯语,而这些函数及其许多前辈的发展史,展示了今天这个版本经历了什么样的复杂路径。

直角三角形里当然有一个直角,但另外两个角是任意的,只要加起来是 90° 就行了。任何角都有三个相关的函数——函数就是用于计算相关数字的规则。对于角A,

e9073959dcb24d2359e402a66339ced6.png

按常规用a、b、c代表三个边的边长,我们定义正弦(sin)、余弦(cos)和正切(tan)如下:

6599c9e9d833431b557c0ca80e364a9c.png

这些量仅取决于角 A,因为给定角 A 的所有直角三角形除了缩放大小不同之外,都是一回事。

因此,我们可以为一系列角度绘制sin、cos和tan值的表格,然后用它们来计算直角三角形的特征。一个可以追溯到远古时代的典型应用,是仅使用在地面上进行的测量来计算高柱的高度。假设从 100 米开外测量,到柱顶的角度是 22°。令图 1.5 中的角 A = 22°,那么 a 就是柱的高度。然后,正切函数的定义告诉我们

024fe079964096ef20864b7017c2ce13.png

所以

b5f8c71305cea5715f5ac23b4a020a36.png

由于 tan 22° 是 0:404(保留小数点后三位),我们就可以得出 a=40:4 米。

一旦有了三角函数,就可以直接将毕达哥拉斯方程扩展到非直角三角形。图 1.6 展示了一个有角度 C 且边长分别为 a、b、c 的三角形。将三角形分成两个直角三角形。然后应用两次毕达哥拉斯方程和一些代数 4,就可证明

632c3e9ea2a7ecfd305ee5b065e5dc62.png

这和毕达哥拉斯方程很相似,除了多出来一项,这个“余弦定理”与毕达哥拉斯方程的作用是一样的,建立了 c 与 a 和 b 之间的联系,但现在必须给出关于角 C 的信息。

余弦定理是三角学的主要支柱之一。如果我们知道三角形的两边和它们之间的夹角,就可以计算出第三边。然后再用类似的方程解出剩下的角度。所有这些方程最终都可以追溯到直角三角形。

3

用三角学计算出地球的大小

测绘学的腾飞是在 1533 年, 当时的荷兰地图制作师赫马 ·弗里修斯(Gemma Frisius) 在 《地点描述小册》(Libellus de LocorumDescribendorum Ratione)中解释了如何使用三角学来获得准确的地图。关于这种方法的消息传遍了整个欧洲,也传进了丹麦贵族和天文学家第谷·布拉赫(Tycho Brahe)的耳朵里。1579 年,第谷用它绘制了其天文台所在的文岛的精确地图。

到 1615 年,荷兰数学家维勒布罗德·斯内利厄斯(Willebrord Snellius,本名维勒布罗德·斯奈尔·范罗恩)将这种方法发展成了现代形式:三角测量法。这种方法用三角形网络测绘区域。通过非常仔细地测量一个初始长度和许多角度,可以计算出三角形顶点的位置,并由此计算出三角形中所有有趣的特征。

斯内利厄斯使用一个由 33 个三角形构成的网络,计算出了两个荷兰城镇阿尔克马尔和贝亨奥普佐姆之间的距离。他之所以选择这两个城镇,是因为它们位于同一条经线上,并且恰好相隔一度。知道了它们之间的距离,他就可以计算出地球的大小。他于 1617 年把这个结果写在了他的《荷兰埃拉托斯特尼》(Eratosthenes Batavus)一书中。他的结果精确到了 4% 以内。他还修改了三角学方程,以反映地球表面的球形特性,这是迈向有效导航的重要一步。

  推荐阅读

8e37eefb006bc1138a5c3a5bef0c4424.jpeg

作者:伊恩•斯图尔特

译者:劳佳

英国数学科普名家伊恩•斯图尔特经典名作,译为多国语言

李永乐推荐科普读物,“欧拉图书奖”获奖作品

17段改变人类文明进程的数学故事,了解世界运转的深层道理,看懂科学发展的规律

30ac104d7c7bc450be8d3f9f3f18ae16.png

f76baa05ab20e8172ea5d729e1201543.jpeg

### IntelliJ IDEA 中通义 AI 功能介绍 IntelliJ IDEA 提供了一系列强大的工具来增强开发体验,其中包括与通义 AI 相关的功能。这些功能可以帮助开发者更高效地编写代并提高生产力。 #### 安装通义插件 为了使用通义的相关特性,在 IntelliJ IDEA 中需要先安装对应的插件: 1. 打开 **Settings/Preferences** 对话框 (Ctrl+Alt+S 或 Cmd+, on macOS)。 2. 导航到 `Plugins` 页面[^1]。 3. 在 Marketplace 中搜索 "通义" 并点击安装按钮。 4. 完成安装后重启 IDE 使更改生效。 #### 配置通义服务 成功安装插件之后,还需要配置通义的服务连接信息以便正常使用其提供的各项能力: - 进入设置中的 `Tools | Qwen Coding Assistant` 菜单项[^2]。 - 填写 API Key 和其他必要的认证参数。 - 测试连接以确认配置无误。 #### 使用通义辅助编程 一旦完成上述准备工作,就可以利用通义来进行智能编支持了。具体操作如下所示: ##### 自动补全代片段 当输入部分语句时,IDE 将自动提示可能的后续逻辑,并允许一键插入完整的实现方案[^3]。 ```java // 输入 while 循环条件前半部分... while (!list.isEmpty()) { // 激活建议列表选择合适的循环体内容 } ``` ##### 解释现有代含义 选中某段复杂的表达式或函数调用,右键菜单里会有选项可以请求通义解析这段代的作用以及优化意见。 ##### 生产测试案例 对于已有的业务逻辑模块,借助于通义能够快速生成单元测试框架及初始断言集,减少手动构建的成本。 ```python def test_addition(): result = add(2, 3) assert result == 5, f"Expected 5 but got {result}" ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值