随着“材料基因组计划”普及,越来越多材料领域的专家和学者已经意识到材料计算、数据和机器学习在新材料研发中的价值和重要性。
部分尚未开展实际应用的专家学者们往往有着美好的“幻想”,即只要有了软件和计算机时就能开展材料计算,“高通量材料计算”也不在话下,然而事实却并非如此。
一个材料计算模拟需要以下图中一系列的操作流程:
材料计算发展受多因素掣肘
为了得到最终的材料物性数据,除计算部分之外还需要多个处理流程协同工作。首先,计算前需要准备大量文件,如结构文件、参数设置文件、赝势文件等;计算完成之后,需要在海量结果中提取需要的数据;为了更好的展示研究结果,还需要用各种软件做可视化展示;此外,输出数据如何安全有效存储和利用也需纳入考虑。
除了计算流程的复杂性,计算模拟还会受到“环境因素”的影响。首先,计算资源经常会成为材料计算的瓶颈,高通量材料计算任务往往被计算资源短缺以及资源类型单一等因素掣肘。
其次,计算过程中用户需要多次登录到计算集群提交任务、下载数据,这会为用户带来不小的管理成本,并且在一系列操作过程中难免也会出现人为因素导致的错误。此外,Linux操作系统是计算模拟的标配&