索引概述
索引(index)是帮助Mysql高效获取数据的数据结构(有序)。
在数据之外,数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种方式引用(指向数据),这样就可以在这些数据结构上实现高级查找算法,这种数据结构就是索引。
-
优缺点
优势 劣势 提高数据检索的效率,降低数据库的IO成本 索引列也是要占用空间的 通过索引列对数据进行排序,降低数据排序的成本,降低CPU的消耗 索引大大提高了查询效率,同时却也降低更新表的速度,如对表进行insert、update、delete时,效率降低
索引结构
mysql的索引是在存储引擎层实现的,不同的存储引擎有不同的结构。
-
索引结构
索引结构 描述 B+Tree索引(默认) 最常见的索引类型,大部分引擎都支持B+树索引 Hash索引 底层数据结构是用哈希表实现的,只有精确匹配索引列的查询才有效,不支持范围查询 R-tree(空间索引) 空间索引是MyISAM引擎的一个特殊索引类型,主要用于地理空间数据类型,通常使用较少 Full-text(全文索引) 是一种通过建立倒排索引,快速匹配文档的方式。类似于Lucene,Solr,ES
索引 | InnoDB | MyISAM | Memory |
B+tree索引 | √ | √ | √ |
Hash索引 | × | × | √ |
R-tree索引 | × | √ | × |
Full-text | 5.6版本之后支持 | √ | × |
二叉树
缺点:
顺序插入时,会形成一个链表,查询性能大大降低。大数据量情况下,层级较深,检索速度慢。
红黑树:
大数据量情况下,层级较深,检索速度慢。
B-tree(多路平衡查找树)
一颗最大度数(max-degree)为5(5阶)的b-tree(每个节点最多存储4个key,5个指针)
B+Tree
一颗最大度数(max-degree)为4(4阶)的b+tree
相对于B-Tree区别:
所有的数据都会出现在叶子节点
叶子节点形成一个单向列表
Mysql索引数据结构对经典的B+Tree进行了优化。在原B+Tree的基础上,增加一个指向相邻叶子节点的链表指针,就形成了带有顺序的B+Tree,提高区间访问的性能。
Hash
哈希索引就是采用一定的hash算法,将键值换算成新的hash值,映射到对应的槽位上,然后存储在hash表中。
如果两个(或多个)键值,映射到一个相同的槽位上,他们就产生了hash冲突(也称为hash碰撞),可以通过链表来解决。
- Hash索引特点
-
Hash索引只能用于对等比较(=,in),不支持范围查询(between,>,<,…)
-
无法利用索引完成排序操作
-
查询效率高,通常只需要一次检索就可以了,效率通常要高于B+tree索引
存储引擎支持:
在Mysql中,支持hash索引的是Memory 引擎,而InnoDB中具有自适应hash功能,hash索引是存储引擎根据B+tree索引在指定条件下自动构建的。
索引分类
-
索引分类
分类 含义 特点 关键字 主键索引 针对于表中主键创建的索引 默认自动创建,只能有一个 primary 唯一索引 避免同一个表中某数据列中的值重复 可以有多个 unique 常规索引 快速定位特定数据 可以有多个 index/key 全文索引 全文索引查找的是文本中的关键词,而不是比较索引中的值 可以有多个 fulltext
在InnoDB存储引擎中,根据索引的存储方式,分为:
分类 | 含义 | 特点 |
聚集索引(Clustered Index) | 将数据存储与索引放到了一块,索引结构的叶子节点保存了行数据 | 必须有,而且只有一个 |
二级索引(Secondary Index) | 将数据与索引分开存储,索引结构的叶子节点关联的是对应的主键 | 可以存在多个 |
聚集索引选取规则:
-
如果存在主键,主键索引就是聚集索引。
-
如果不存在主键,将使用第一个唯一(unique)索引作为聚集索引。
-
如果表没有主键,或没有合适的唯一索引,则InnoDB会自动生成一个rowid作为隐藏的聚集索引。
索引语法
-
创建索引
create [unique | fulltext] index 索引名 on 表名 (字段名,…);
-
查看索引
show index from 表名;
-
删除索引
drop index 索引名 on 表名;
SQL性能分析
SQL执行频率
Mysql客户端连接成功后,通过show [session | global] status 命令可以提供服务器状态信息。
-
查看当前数据库的insert、update、delete、select的访问频次
show global status like 'Com_______'; 注:7个下划线
慢查询日志
慢查询日志记录了所有执行时间超过指定参数(long_query_time,单位:秒,默认10秒)的所有SQL语句的日志。
MySQL的慢查询日志默认没有开启,需要在MySQL的配置文件(/etc/my.cnf)中配置信息。
-
配置信息
# 开启MySQL慢日志查询开关
set @@slow_query_log = 1;
# 设置慢日志的时间为2秒,SQL语句执行时间超过2秒,就会视为慢查询,记录慢查询日志
set @@long_query_time = 2;
profile详情
show profiles 能够在做SQL优化时帮助我们了解时间都耗费到哪里去了。通过have_profiling参数,能够看到当前MySQL是否支持profile操作
select @@have_profiling;
可以通过set语句在session/global级别开启profiling
set profiling = 1;
执行一系列的业务SQL的操作,然后通过如下指令查看指令的执行耗时:
-
查看每一条SQL的耗时基本情况
show profiles;
-
查看指定query_id的SQL语句各个阶段的耗时情况
show profile for query query_id;
-
查看指定query_id的SQL语句CPU的使用情况
show profile cpu for query query_id;
explain执行计划
explain或者desc命令获取MySQL如何执行select语句的信息,包括在select语句执行过程中表如何连接和连接的顺序。
-
语句
直接在select语句之前加上关键字 explain / desc
explain 查询语句;
-
explain执行计划各字段含义
-
Id
select查询的序列号,表示查询中执行select子句或者是操作表的顺序(id相同,执行顺序从上到下;id不同,值越大,越先执行)
-
select_type
表示select的类型,常见的取值有simple(简单表,即不使用表连接或者子查询)、primary(主查询,即外层的查询)、union(union中的第二个或者后面的查询语句)、subquery(select/where之后包含了子查询)等
-
type
表示连接类型,性能由好到差的连接类型为null、system、const、eq_ref、ref、range、index、all
-
possible_key
显示可能应用在这张表上的索引,一个或多个
-
Key
实际使用的索引,如果为null,则没有使用索引
-
Key_len
表示索引中使用的字节数,该值为索引字段最大可能长度,并非实际使用长度,在不损失精确性的前提下,长度越短越好
-
rows
mysql认为必须要执行查询的行数,在innodb引擎的表中,是一个估计值,可能并不总是准确的
-
filtered
表示返回结果的行数占需读取行数的百分比,filtered的值越大越好
索引使用规则
验证索引效率
-
在未建立索引之前执行sql语句,查看sql的耗时
-
针对字段创建索引
-
再次执行相同的sql语句,再次查询sql的耗时
最左前缀法则
如果索引了多列(联合索引),要遵守最左前缀法则。最左前缀法则指的是查询从索引的最左列开始,并且不跳过索引中的列。如果跳跃某一列,索引将部分失效(后面的字段索引失效)
-
范围查询
联合索引中,出现范围索引(>,<),范围查询右侧的列索引失效
索引失效情况
-
索引列运算
不要在索引列上进行运算操作,索引将失效。
-
字符串不加引号
字符串类型字段使用时,不加引号,索引将失效。
-
模糊查询
如果仅仅是尾部模糊匹配,索引不会失效。如果是头部模糊匹配,索引失效。
-
or连接的条件
用or分开的条件,如果or前的条件中的列有索引,而后面的列中没有索引,那么涉及的索引都不会被用到。
-
数据分布影响
如果mysql评估使用索引比全表更慢,则不使用索引。
SQL提示
SQL提示,是优化数据库的一个重要手段,简单来说,就是在SQL语句中加入一些人为的提示来达到优化操作的目的。
use index:
select * from 表名 use index(索引名);
使用哪个索引
ignore index:
select * from 表名 ignore index(索引名);
不使用哪个索引
force index:
select * from 表名 force index(索引名);
必须使用哪个索引
覆盖索引&回表查询
尽量使用覆盖索引(查询使用了索引,并且需要返回的列,在该索引中已经全部能够找到),减少select *
explain
-
using index condition:查找使用了索引,但是需要回表查询数据
-
using where;using index:查找使用了索引,但是需要的数据都在索引列中能找到,所以不需要回表查询数据
前缀索引
当字段类型为字符串(varchar,text等)时,有时候需要索引很长的字符串,这会让索引变得很大,查询时,浪费大量的磁盘IO,影响查询效率。此时可以只将字符串的一部分前缀,建立索引,这样可以大大节约索引空间,从而提高索引效率。
-
语法
create index 索引名 on 表名(字段名(n));
n表示要提取的字符串前面n个字符来构建索引
前缀长度
可以根据索引的选择性来决定,而选择性是指不重复的索引值(基数)和数据表的记录总数的比值,索引选择性越高则查询效率越高,唯一索引的选择性是1,这是最好的索引选择性,性能也是最好的。
select count(distinct 字段名) / count(*) from 表名;
select count(distinct substring(字段名,截取的开始位置,截取的结束位置)) / count(*) from 表名;
单列&联合索引
单列索引:即一个索引只包含单个列。
联合索引:即一个索引包含了多个列。
多条件联合查询时,MySQL优化器会评估哪个字段的索引效率更高,会选择该索引完成本次查询。
索引设计原则
-
针对数据量较大,且查询比较频繁的表建立索引。
-
针对于常作为查询条件(where)、排序(order by)、分组(group by)操作的字段建立索引。
-
尽量选择区分度高的列作为索引,尽量建立唯一索引,区分度越高,使用索引的效率越高。
-
如果是字符串类型的字段,字段的长度较长,可以针对于字段的特点,建立前缀索引。
-
尽量使用联合索引,减少单列索引,查询时,联合索引很多时候可以覆盖索引,节省存储空间,避免回表,提高查询效率。
-
要控制索引的数量,索引并不是多多益善,索引越多,维护索引结构的代价也就越大,会影响增删改的效率。
-
如果索引列不能存储NULL值,请在创建表时使用NOT NULL约束它。当优化器知道每列是否包含NULL值时,它可以更好的确定哪个索引最有效的用于查询。