题目描述
【采样过滤】
在做物理实验时,为了计算物体移动的速率,通过相机等工具周期性的采样物体移动距离。
由于工具故障,采样数据存在误差甚至错误的情况。
需要通过一个算法过滤掉不正确的采样值,不同工具的故障模式存在差异,算法的相关门
限会根据工具类型做相应的调整。
请实现一个算法,计算出给定一组采样值中正常值的最长连续周期。
判断第i个周期的采样数据Si是否正确的规则如下(假定物体移动速率不超过10个单元前一个采样周期S[i-1]):
- S[i]<=0,即为错误值
- S[i]<S[i-1],即为错误值
- S[i]-S[i-1]>=10,即为错误值。其它情况为正常值
判断工具是否故障的规则如下:
- 在M个周期内,采样数据为错误值的次数为T(次数可以不连续),则工具故障。
判断故障恢复的条件如下:
- 产生故障后的P个周期内,采样数据一直为正常值,则故障恢复
错误采样数据的处理方式
- 检测到故障后,丢弃从故障开始到故障恢复的采样数据
- 在检测到工具故障之前,错误的采样数据,则由最近一个正常值代替;如果前面没有正常的采样值,则丢弃此采样数据
给定一段周期的采样数据列表S,计算正常值的最长连续周期。
输入描述
故障确认周期数和故障次数门限分别为M和T,故障恢复周期数为P。第i个周期,检测点的状态为S[i]。
输入为两行,格式如下:
M T P
s1 s2 s3 …
M、T 和 P的取值范围为[1,100000]
si取值范围为[0,100000],从0开始编号
输出描述
一行,输出正常值的最长连续周期。
示例1 输入输出示例仅供调试,后台判题数据一般不包含示例
输入
10 6 3
-1 1 2 3 100 10 13 9 10
输出
8
题目分析
提取题目约束条件
- 工具是否故障的规则
- 在 M 个周期内,故障次数为 T 次
- 这里假如 M 个周期内,故障总次数超过 T 次该如何处理?
- 检测到故障,直接进入恢复周期
- 判断故障恢复的条件
- 产生故障后(确认工具故障,才为产生故障后) p 个周期内,采样数据一直为正常值�
- 错误采样数据的处理方式
- 检测到故障之后,丢弃从故障开始到故障恢复的采样数据.�
- 这里注意是检测到故障之后,然后进入恢复周期
- 检测到故障之前,错误的采样数据,由最近一个正常值代替;如果前面没有正常的采样值,则丢弃该采样数据.�
- 这里错误的数据被正常值代替之后,被认为是正常值?
- 这里错误的数据被正常值代替之后,被认为是正常值?
- 检测到故障之后,丢弃从故障开始到故障恢复的采样数据.�
解题思路
:::success
分为两种情况讨论
- 第一个采样数据为错误数据,即小于等于0的情况
- baseCase:需要寻找到底一个有效的正确采样数据,来计算正常值的连续周期
- case1:在第一个 M 周期内,如果故障次数没有超过门限值 T,那么在第一个周期内即可以找到第一个正确采样数据
- case2:连续错误采样数据(丢弃),进入恢复周期,第一个正确且有效的采样数据在故障恢复后获得
- 这里如果故障恢复后,丢弃掉之前的采样数据。需要从baseCase逻辑重新计算
- 这里如果检测到正常数据了,在当前M个周期内故障门限次数还没有到
- 接下来如果故障次数累积不超过T,那么进入下一个周期。
- 如果故障次数超过T,那么进入恢复周期
- 第一个采样数据为正确数据
- 则从第一个数据起就可以计算出一个正常值的连续周期
- 然后 case1 case2
:::
上代码
/**
* 采样过滤.
* @param M 故障确认周期数.
* @param T 故障次数门限.
* @param P 故障恢复周期数.
* @param samples 样品数据.
* @return 正常值的最长连续周期.
*
* 工具是否故障的规则: 在 m 个周期内,故障次数为 t 次
* 判断故障恢复条件: 产生故障后(确认工具故障,才为产生故障后) e 个周期内,采样数据一直为正常值.
* 错误采样数据处理方式: 检测到故障之后,丢弃从故障开始到故障恢复的采样数据.
* 检测到故障之前,错误的采样数据,由最近一个正常值代替;如果前面没有正常的采样值,则丢弃该采样数据.
*
* 错误采样数据确认方式:s[i] <= 0
* s[i] < s[i-1]
* s[i] - s[i-1] >= 10
*
* 首先要在 每一个 m 周期内,统计错误采样数据的次数.
*/
private static int takeSampleFilter(int M, int T, int P, int[] samples) {
// 下标 i -> 正常迭代下标.
int i= 0;
int n = samples.length;
int cycle = 0,fail = 0;
// 用一个栈把正常数据的下标都给保存下来.
Deque<Integer> deque = new LinkedList<>();
while(i < n) {
// 直接判断在 M 周期内是不是进入了故障恢复期.
if(cycle <= M) {
// cycle永远小于M,因为进入下一个周期,会重置 cycle 和 fail.
if(fail == T) {
// 这个时候进入恢复周期,产生故障之后,优先进入恢复周期,即使 M 周期没有走完.
// 恢复周期为 T
int count = P;
while(count > 0 && i < n) {
if(judge(samples, i)) {
// 这里的话, 表示数据还是异常.
count = P;
} else {
count--;
}
i++;
}
// 如果已经恢复,那么进入到正常的周期循环,此时 i 的位置代表了,数据恢复正常之后的第一个数据位置.
cycle = fail = 0;
continue;
}
if(cycle == M) {
// 进入下一个周期.
cycle = fail = 0;
continue;
}
}
// true : 数据采样错误.
if(judge(samples, i)) {
// 故障次数+1
fail++;
// 数据故障,判断是否可以被近似正常值代替.
// 栈不为空,表示存在近似正常数据.
if(!deque.isEmpty()) {
samples[i] = samples[deque.peek()];
deque.push(i);
}
} else {
// 如果是正确采样数据的话,保存下标.
deque.push(i);
}
// 周期数+1
cycle++;
i++;
}
int ans = 0;
int lastIndex = deque.pop();
int temp = 1;
while(!deque.isEmpty()) {
if(deque.peek() + 1 == lastIndex) {
temp++;
lastIndex = deque.pop();
} else {
ans = Math.max(ans, temp);
lastIndex = deque.pop();
temp = 1;
}
}
return ans==0?temp:ans;
}
private static boolean judge(int[] samples, int i) {
return samples[i] <= 0 || (i >= 1 && (samples[i] < samples[i-1])) || samples[i] - samples[i-1] >= 10;
}