OpenCV二维码检测流程全解析

引入必要的OpenCV和C++库

首先,程序包含了OpenCV库和C++标准库的头文件,这些库提供了处理图像所需的各种功能。

#include <opencv2/core.hpp> // OpenCV核心功能#include <opencv2/imgcodecs.hpp> // 图像编解码#include <opencv2/highgui.hpp> // GUI#include <opencv2/imgproc.hpp> // 图像处理#include <iostream> // 输入输出流#include <set> // 集合#include <opencv2/opencv.hpp> // OpenCV主要功能#include <opencv2/imgproc/types_c.h> // 旧版的图像处理

使用namespace简化代码中频繁使用的命名空间引用。

using namespace cv;

using namespace std;

定义结构体和全局变量

定义一个结构体index_用于存储相关联的轮廓索引,以及一个全局变量vin存储这些结构体的向量,用于后续处理。

RNG rng(12345);

struct index_ {   

int a1;    int a2;    int a3;};

index_ in;

vector<index_> vin;

主函数和图像预处理

加载图像,调整大小至500x500像素,以便于处理。对图像进行对比度和亮度调节,目的是增强图像中的二维码部分,使其在后续步骤中更容易被识别。

c2723e435dc9459fa9d9ad8b44ea742f.png 

String srcImagePath("D:\\Users\\Desktop\\opencv二维码定位图案检测(c++)\\8.jpg");Mat srcImage = imread(srcImagePath, IMREAD_COLOR);resize(srcImage, srcImage, Size(500, 500));

c57c54981f1341dd9d2f8405b6a1e223.png

Mat contrastImage = Mat::zeros(srcImage.size(), srcImage.type());double alpha = 1.8;  // 对比度控制int beta = -30;   // 亮度控制for (int y = 0; y < srcImage.rows; y++) {    for (int x = 0; x < srcImage.cols; x++) {        for (int c = 0; c < 3; c++) {            contrastImage.at<Vec3b>(y, x)[c] =                saturate_cast<uchar>(alpha * srcImage.at<Vec3b>(y, x)[c] + beta);        }    }}

灰度转换、滤波、二值化

将调整后的图像转换为灰度图像,并应用双边滤波器进行平滑处理。然后对图像进行二值化处理,这是为了准备图像的边缘检测步骤。


cf052e022cec4e12aab83c057cadc68f.png

 

cvtColor(contrastImage, grayImage, COLOR_BGR2GRAY);bilateralFilter(grayImage, filterImage, 13, 26, 6);threshold(filterImage, binaryImage, 210, 255, THRESH_BINARY_INV);

 

边缘检测、腐蚀和膨胀处理

使用Canny算法进行边缘检测,以便于识别图像中的直线。对二值化后的图像进行腐蚀和膨胀处理,旨在去除噪点并强化主要特征,特别是二维码的边缘。

7944bb30da3c465cb9d3906821f7b35e.png

2af0a0cf87564f6192d7482dccfa2b37.png 

 Canny(dilateImage, cannyImage, 10, 100, 3, false);

直线检测

通过霍夫变换在Canny边缘检测得到的图像上检测直线。霍夫变换是一种在图像中识别几何形状(如直线和圆)的技术。

feef6dbfe6c94cb8987ba89d7c04da6b.png  

vector<Vec2f> lines;HoughLines(cannyImage, lines, 5, CV_PI / 180, 100);

这段代码执行霍夫直线检测,lines存储检测到的直线,每条直线由两个参数表示:距离ρ(rho)和角度θ(theta)。参数设定确保能有效检测到直线。

直线过滤与删除相似直线

为了减少处理的直线数量,提高效率和准确性,程序设计了一段逻辑来删除相似的直线,只保留最关键的直线。

20e6982e60c84aadb21953a2d6a6db44.png   

double A = 50.0;double B = CV_PI / 180 * 20;set<size_t> removeIndex;while (1) {    for (size_t i = 0; i < resLines.size(); i++) {        for (size_t j = i + 1; j < resLines.size(); j++) {            // 直线参数            float rho1 = resLines[i][0], theta1 = resLines[i][1];            float rho2 = resLines[j][0], theta2 = resLines[j][1];

            // 角度调整,确保比较的一致性            if (theta1 > CV_PI) theta1 -= CV_PI;            if (theta2 > CV_PI) theta2 -= CV_PI;

            // 判断是否为相似直线并标记删除            bool thetaFlag = abs(theta1 - theta2) <= B ||                             (theta1 > CV_PI / 2 && theta2 < CV_PI / 2 && CV_PI - theta1 + theta2 < B) ||                             (theta2 > CV_PI / 2 && theta1 < CV_PI / 2 && CV_PI - theta2 + theta1 < B);            if (abs(rho1 - rho2) <= A && thetaFlag) {                removeIndex.insert(j);            }        }    }

    // 删除标记的直线    vector<Vec2f> newLines;    for (size_t i = 0; i < resLines.size(); i++) {        if (removeIndex.find(i) == removeIndex.end()) {            newLines.push_back(resLines[i]);        }    }    resLines = newLines;

    // 直线数量达到目标值则终止循环    if (resLines.size() == 4) break;}

该段代码通过比较直线的ρ和θ值,删除相似的直线,直至剩下4条代表二维码边缘的直线。

计算直线交点

接下来,计算剩余直线的交点,这些交点预计位于二维码的四个角落。

 

double threshold = 0.2 * min(srcImage.rows, srcImage.cols);vector<Point> points;for (int i = 0; i < fourLines.size(); i++) {  for (int j = i + 1; j < fourLines.size(); j++) {  // 提取直线参数  double rho1 = fourLines[i][0], theta1 = fourLines[i][1];  double rho2 = fourLines[j][0], theta2 = fourLines[j][1];

// 调整θ值以处理斜率无穷大的情况  if (theta1 == 0) theta1 = 0.01;  if (theta2 == 0) theta2 = 0.01;

// 计算直线交点  double a1 = cos(theta1), a2 = cos(theta2);  double b1 = sin(theta1), b2 = sin(theta2);double x = (rho2 * b1 - rho1 * b2) / (a2 * b1 - a1 * b2);  double y = (rho1 - a1 * x) / b1;

// 保证交点在图像范围内  Point pt(cvRound(x), cvRound(y));  if (pt.x <= srcImage.cols + threshold && pt.x >= -threshold && pt.y < srcImage.rows + threshold && pt.y >= -threshold) { points.push_back(pt); }}

 

这段代码利用数学方法来计算直线的交点。对于直线方程的每一对组合,通过解析几何的方式计算它们的交点,然后校验这个交点是否位于图像的有效范围内。这样得到的点(如果在有效范围内)被认为是二维码的角点之一。

二维码区域的仿射变换


efc1bcfcf1ac487eabce427847240a57.png

 获取到四个角点后,接下来的步骤是将这部分图像进行仿射变换,以校正图像,使得二维码摆正方便后续解码。

Point2f srcTri[4];Point2f dstTri[4];// 假设srcTri已经根据points数组正确赋值// dstTri是变换后希望得到的正方形坐标

Mat transmtx = getPerspectiveTransform(srcTri, dstTri);warpPerspective(srcImage, perspImage, transmtx, perspImage.size());

通过getPerspectiveTransform和warpPerspective函数,计算从原图到目标图像的透视变换矩阵,并应用这个变换。这样,即便原始图像中的二维码是倾斜的,也能被矫正为正面朝上的状态,便于解码。

寻找定位角和解码

在变换后的图像中,需要再次寻找二维码的定位角。这一过程涉及到对图像轮廓的检测和分析,从而找到标志二维码位置的特定图形(通常是三个较大的正方形)。 

 

findContours(perspImage, contours, hierarchy, RETR_TREE, CHAIN_APPROX_SIMPLE);// 分析轮廓和层级关系,寻找定位角

对于每一个找到的轮廓,通过几何关系和层级关系来判定哪些是二维码的定位角。之后,可以根据这些定位角来进一步处理图像,或者直接在矫正后的图像上进行二维码的解码。

37d60e3ad9dd4f39b6d1daeeb0e4170b.png

9f141a778d4542c4ab44e3c9e7566d04.png 

 

string qrCodeText;if (decodeQRCode(perspImage, qrCodeText)) {    cout << "Decoded QR Code Text: " << qrCodeText << endl;} else {    cout << "QR Code not detected or decoded." << endl;}

这里decodeQRCode函数负责实际的二维码解码工作,它尝试从提供的图像中检测并解码二维码。如果成功,解码的文本内容将被打印出来。

总结

使用OpenCV进行二维码检测与解码的完整过程。从图像的预处理开始,经过边缘检测、直线检测与过滤、计算交点、图像矫正,最终到二维码的解码,每一步都是为了使二维码图像能够被正确识别和解析。

 

 

OpenCV+zbar开源库实现摄像头识别二维码,测试验证识别率非常高,已实现简单的应用。 打包源码在VS2013下可以完编译成功,附加包含OpenCV库及zbar-0.10-setup.exe,zbar-0.10.tar.bz2 下载Demo后需要安装 zbar-0.10-setup.exe 以下代码可以可以完成整个流程的开发,也可以贡献积分下载资源包。 1、 环境准备 (1) OpenCV库2.49 (2) ZBar开源库 (3) VS2013 2、 VS2013环境配置 (1) 配置附加包含目录 C/C++ -- 附加包含目录 include\opencv\include\ include\opencv\include\opencv include\opencv\include\opencv2 include (2) 配置链接器 链接器 -- 附加库目录 lib32\opencv\lib lib32 (3) 配置链接器 链接器--输入--附加依赖项 opencv_core249d.lib opencv_highgui249d.lib opencv_imgproc249d.lib libzbar-0.lib 3、 代码开发 (1)包含头文件 include include include include include include using namespace std; using namespace zbar; using namespace cv; (2)实现函数 void MatToCImage(cv::Mat &mat, CImage &cImage) { //create new CImage int width = mat.cols; int height = mat.rows; int channels = mat.channels(); cImage.Destroy(); //clear cImage.Create(width, height, 8 * channels); //默认图像像素单通道占用1个字节 //copy values uchar* ps; uchar* pimg = (uchar*)cImage.GetBits(); //A pointer to the bitmap buffer int step = cImage.GetPitch(); for (int i = 0; i (i)); for (int j = 0; j GetDlgItem(IDC_STATIC_IMG)->GetClientRect(▭); cv::VideoCapture capture(0);//从摄像头读入图像 while (!m_bCloseCamera) { cv::Mat frame; capture >> frame; cv::Mat newframe; cv::Size ResImgSiz = cv::Size(rect.Width(), rect.Height()); cv::resize(frame, newframe, ResImgSiz, CV_INTER_CUBIC); MatToCImage(newframe, imgDst); imgDst.Draw(pThis->GetDlgItem(IDC_STATIC_IMG)->GetDC()->GetSafeHdc(), rect); ImageScanner scanner; scanner.set_config(ZBAR_NONE, ZBAR_CFG_ENABLE, 1); Mat imageGray; cvtColor(frame, imageGray, CV_RGB2GRAY); int width = imageGray.cols; int height = imageGray.rows; uchar *raw = (uchar *)imageGray.data; Image imageZbar(width, height, "Y800", raw, width * height); scanner.scan(imageZbar); //扫描条码 Image::SymbolIterator symbol = imageZbar.symbol_begin(); if (imageZbar.symbol_begin() == imageZbar.symbol_end()) { } else { iIndex++; if (iIndex > 999999) { iIndex = 0; } for (; symbol != imageZbar.symbol_end(); ++symbol) { char szInfo[1024]; memset(szInfo, 0, sizeof(szInfo)); sprintf(szInfo, "[d]类型:%s\r\n条码:%s\r\n", iIndex , symbol->get_type_name().c_str(), symbol->get_data().c_str()); pThis->GetDlgItem(IDC_EDIT1)->SetWindowText(szInfo); } } imageZbar.set_data(NULL, 0); } imgDst.Destroy(); capture.release(); return 0; }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值