中国剩余定理

中国剩余定理(限制条件:模为两两互质)

中国剩余定理其实很早我们都接触过,在初中甚至小学的时候我们都有可能看到过这样的问题:有n个东西,三个人分剩两个,五个人分剩三个,七个人分剩两个,求n最少是多少。

求解这个问题古人就已经想到了很好的解决办法。
我们由题意易知:
x=2(mod)3;
x=3(mod)5;
x=2(mod)7;

如果x=n1+n2+n3。
n1是5,7的倍数,且n1%3=2。
n2是3,7的倍数,且n2%5=3。
n3是3,5的倍数,且n3%7=2。
故我们可以知道n1+n2+n3定是x的一个解。

那么怎么求n1,n2,n3呢?
我们由逆元知道。

(57) inv(57,3) = 1(mod)3;
(3
7)* inv(37, 5) = 1(mod)5;
(3
5)* inv(3*5, 7) = 1(mod)7;

 故n1 = 2 * 5*7*inv(5*7,3),n2 = 3 * 3*7*inv(3*7, 5),n3 = 2 * 3*5*inv(3*5, 7)  。

因为,中国剩余定理的模都是两两互质,必有逆元。用扩展欧几里得算法就可以求解,于是我们最后将求得的n1,n2,n3相加,最后的答案就是n=(n1+n2+n3)mod(lcm(3,5,7))。
在这里插入图片描述
扩展下,一共有n对方程,
x = p[i] mod m[i]
设M = m[i]数组的积,设Mi = M / mi,即为除了mi其他数的积,设ti = Mi 在mod mi的逆元,即Mi * ti =1mod mi。

x = ∑ n = 1 N p i M i t i x = \sum_{n=1}^Np_iM_it_i x=n=1NpiMiti m o d M mod M modM

模板 51nod1079

#include <bits/stdc++.h>
#define INF 0x3f3f3f3f
#define d(x) cout << (x) << endl
#pragma GCC diagnostic error "-std=c++11"
using namespace std;
typedef long long ll;
const int mod = 1000000009;
const int N = 20;

ll p[N], m[N];
int n;

void exgcd(ll a, ll b, ll &x, ll &y)
{ //exgcd求乘法取模运算的逆元
    if (!b)
    {
        y = 0, x = 1;
        return;
    }
    else
    {
        exgcd(b, a % b, x, y);
        ll temp = x;
        x = y;
        y = temp - a / b * y;
    }
}

ll crt(void)
{
    ll M = 1, ans = 0;
    for (int i = 0; i < n; i++)
    {
        M *= m[i];
    }
    for (int i = 0; i < n; i++)
    {
        ll mi = M / m[i], x, y;
        exgcd(mi, m[i], x, y);
        ans = (ans + p[i] * x * mi) % M;
    }
    if (ans < 0)
    {
        ans += M;
    }
    return ans;
}

int main()
{
    scanf("%d", &n);
    for (int i = 0; i < n; i++)
    {
        scanf("%lld%lld", &m[i], &p[i]);
    }
    printf("%lld\n", crt());
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
#include #include using namespace std; typedef int LL; typedef pair PLL; LL inv(LL t, LL p) {//求t关于p的逆元 if (t >= p) t = t%p; return t == 1 ? 1 : (p - p / t) * inv(p % t, p) % p; } LL gcd(LL a, LL b){ return b == 0 ? a : gcd(b, a%b); } PLL linear(LL A[], LL B[], LL M[], int n) {//求解A[i]x = B[i] (mod M[i]),总共n个线性方程组 LL x = 0, m = 1; for (int i = 0; i < n; i++) { LL a = A[i] * m, b = B[i] - A[i] * x, d =gcd(M[i], a); if (b % d != 0) return PLL(0, -1);//答案不存在,返回-1 LL t = b / d * inv(a / d, M[i] / d) % (M[i] / d); x = x + m*t; m *= M[i] / d; } x = (x % m + m) % m; return PLL(x, m);//返回的x就是答案,m是最后的lcm值 } int main() { int n; scanf_s("%d", &n); LL a[2017], b[2017], m[2017]; for (int i = 0; i<n; i++) { scanf_s("%d%d%d", &a[i], &b[i], &m[i]); } PLL pa = linear(a, b, m, n); printf("%lld\n", pa.first); } 设计思路: 有这样一道算术题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?” 解这题,先构造一个答案 5*7*inv(5*7, 3) % 3 = 1 3*7*inv(3*7, 5) % 5 = 1 3*5*inv(3*5, 7) % 7 = 1 然后两边同乘你需要的数 2 * 5*7*inv(5*7, 3) % 3 = 2 3 * 3*7*inv(3*7, 5) % 5 = 3 2 * 3*5*inv(3*5, 7) % 7 = 2 令 a = 2 * 5*7*inv(5*7, 3) b = 3 * 3*7*inv(3*7, 5) c = 2 * 3*5*inv(3*5, 7) 那么 a % 3 = 2 b % 5 = 3 c % 7 = 2 其实答案就是a+b+c 因为 a%5 = a%7 = 0 因为a是5的倍数,也是7的倍数 b%3 = b%7 = 0 因为b是3的倍数,也是7的倍数 c%3 = c%5 = 0 因为c是3的倍数,也是5的倍数 所以 (a + b + c) % 3 = (a % 3) + (b % 3) + (c % 3) = 2 + 0 + 0 = 2 (a + b + c) % 5 = (a % 5) + (b % 5) + (c % 5) = 0 + 3 + 0 = 3 (a + b + c) % 7 = (a % 7) + (b % 7) + (c % 7) = 0 + 0 + 2 = 2 答案a+b+c完全满足题意 但是答案,不只一个,有无穷个,每相隔105就是一个答案(105 = 3 * 5 * 7) a=2*5*7*2=140 b=3*3*7*1=63 c=2*3*5*1=30 140+63+30=233 2335 = 23 如果题目问你最小的那个答案,那就是23了。 当 1*x=2(%3) 1*x=3(%5) 1*x=2(%7) 输入: 3 1 2 3 1 3 5 1 2 7 输出: 23

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值