Python 执行sql条件查询语句速度很慢的解决方法

本文分享了一次数据库查询性能优化的经历,通过在查询语句的字段上添加索引,将原本需要一分钟的查询时间缩短到零点几秒,揭示了索引对于提升数据库查询效率的重要性。
  • 问题描述

今天写程序碰到一个问题,程序刚开始运行的好好的,到了后面,数据库中的文件越来越多的时候,程序运行开始变慢,到了后来, 一条条件查询语句,竟然要用一分钟之久,要知道只有几万条数据(虽然数据内容很大)

  • 解决方法

这个问题,困扰我好久,我之前一直在优化自己的程序,想要提高程序运行速度,可是却收效甚微,最终在同事的帮助下解决了问题。

解决问题的方法就是添加索引

给联合查询语句后面的字段添加索引,比如:select name from table where id=1;

如果我们不添加索引,那么,当数据量变多的时候,我们会发现程序明显变慢

添加索引以后,程序变快,从查询时间一分钟,缩减到了零点几秒

 

那么,如何添加索引呢?最好的办法就是用Navicat

在需要添加索引的表,右键——设计表——添加索引即可,如下

栏位选择就选择需要添加索引的栏位(有下拉列表),名的话,就自己取一个,索引类型我用的normal(我也不清楚normal和uniqu的区别),然后索引方法为btree

 

设置保存以后,快去试试看程序是不是变快很多呢~ 

 

在Tkinter应用中,如果你发现执行SQL查询的时间过长导致界面响应变,这通常是因为数据库操作阻塞了主线程,影响了UI的更新。以下是一些优化策略: 1. **异步执行**: 使用线程或进程池将SQL查询任务放到后台执行,不阻塞主线程。你可以利用Python的concurrent.futures模块或第三方库如SQLAlchemy的连接池来实现。 ```python import threading from concurrent.futures import ThreadPoolExecutor def execute_sql(query): with ThreadPoolExecutor() as executor: result = executor.submit(database_query_function, query) return result.result() ... future = execute_sql(some_complex_sql) ``` 2. **批量处理**: 对于大量数据一次性查询的情况,考虑分批获取数据,避免内存溢出。每次从数据库读取一部分数据并在完成之后显示在界面上。 3. **索引优化**: 确保数据库表中的关键字段有合适的索引,加快查询速度。 4. **缓存机制**: 如果结果不需要实时更新,可以考虑将结果缓存在内存或文件中,下次直接读取缓存,减少对数据库的访问。 5. **数据库调优**: 根据你的具体数据库类型(MySQL、PostgreSQL等),检查是否有适合性能优化的参数设置,如查询计划、并发连接数等。 6. **延迟加载**: 对于详细的数据,可以让用户选择查看,而不是一次性加载所有内容。 7. **使用ORM工具**: ORM库如SQLAlchemy提供了更加高级的方式来管理数据库操作,它们可能会自动优化查询。 8. **代码重构**: 分解复杂的SQL查询,尽可能使用JOINs和子查询,使其更容易理解和优化。 记得定期监控和测试性能,找出瓶颈所在,然后针对具体的场景采取相应措施。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值