题目链接:https://leetcode.com/problems/gas-station/
在一条环路上有 N 个加油站,其中第 i 个加油站有汽油 gas[i]
升。
你有一辆油箱容量无限的的汽车,从第 i 个加油站开往第 i+1 个加油站需要消耗汽油 cost[i]
升。你从其中的一个加油站出发,开始时油箱为空。
如果你可以绕环路行驶一周,则返回出发时加油站的编号,否则返回 -1。
说明:
- 如果题目有解,该答案即为唯一答案。
- 输入数组均为非空数组,且长度相同。
- 输入数组中的元素均为非负数。
示例 1:
输入: gas = [1,2,3,4,5] cost = [3,4,5,1,2] 输出: 3 解释: 从 3 号加油站(索引为 3 处)出发,可获得 4 升汽油。此时油箱有 = 0 + 4 = 4 升汽油 开往 4 号加油站,此时油箱有 4 - 1 + 5 = 8 升汽油 开往 0 号加油站,此时油箱有 8 - 2 + 1 = 7 升汽油 开往 1 号加油站,此时油箱有 7 - 3 + 2 = 6 升汽油 开往 2 号加油站,此时油箱有 6 - 4 + 3 = 5 升汽油 开往 3 号加油站,你需要消耗 5 升汽油,正好足够你返回到 3 号加油站。 因此,3 可为起始索引。
思路一:暴力法
AC 143ms beats 5.2% Java:
class Solution {
public int canCompleteCircuit(int[] gas, int[] cost) {
if(gas.length==0||cost.length==0)
return -1;
int ans=-1;
int n=gas.length;
for(int i=0;i<n;i++){
int count=0;
int totalGas=0;
int totalCost=0;
if(gas[i]<cost[i])
continue;
ans=i;
for(int j=i;count<n;j++,count++){
j=j%n;
totalGas+=gas[j];
totalCost+=cost[j];
if(totalGas<totalCost){
ans=-1;
break;
}
}
if(count==n)
return ans;
}
return ans;
}
}
方法二:
我们首先要知道能走完整个环的前提是gas的总量要大于cost的总量,这样才会有起点的存在。
假设开始设置起点start = 0, 并从这里出发,如果当前的gas值大于cost值,就可以继续前进,
此时到下一个站点,剩余的gas加上当前的gas再减去cost,看是否大于0,若大于0,则继续前进。
当到达某一站点时,若这个值小于0了,则说明从起点到这个点中间的任何一个点都不能作为起点,
则把起点设为下一个点,继续遍历。当遍历完整个环时,当前保存的起点即为所求。
AC 0ms 100% Java:
class Solution {
public int canCompleteCircuit(int[] gas, int[] cost) {
if(gas.length==0||cost.length==0)
return -1;
int tank=0,start=0,total=0;
for(int i=0;i<gas.length;i++){
total+=(gas[i]-cost[i]);
tank+=(gas[i]-cost[i]);
if(tank<0){
start=i+1;
tank=0;//更新出发点,更新油箱的油量。
}
}
return total<0?-1:start;//如果最终的total<0,则不存在解.
}
}