题目描述
现有村落间道路的统计数据表中,列出了有可能建设成标准公路的若干条道路的成本,求使每个村落都有公路连通所需要的最低成本。
输入格式:
输入数据包括城镇数目正整数 N ( ≤ 1000 ) N(≤1000) N(≤1000)和候选道路数目 M ( ≤ 3 N ) M(≤3N) M(≤3N);
随后的 M M M行对应 M M M条道路,每行给出 3 个正整数,分别是该条道路直接连通的两个城镇的编号以及该道路改建的预算成本。为简单起见,城镇从 1 1 1 到 N N N 编号。
输出格式:
输出村村通需要的最低成本。如果输入数据不足以保证畅通,则输出 −1 ,表示需要建设更多公路。
输入样例:
6 15
1 2 5
1 3 3
1 4 7
1 5 4
1 6 2
2 3 4
2 4 6
2 5 2
2 6 6
3 4 6
3 5 1
3 6 1
4 5 10
4 6 8
5 6 3
输出样例:
12
题解一
很直白的最小生成树问题,要求输出边的和。使用Prim算法解决。
分析题意, N ( N ≤ 1000 ) N(N ≤ 1000) N(N≤1000)个节点,最多有 3 N 3N 3N 条边,应该是个稀疏图,所以使用邻接表来保存图。
所以还需要建一个边的封装类:
class Line
{
int source;
int target;
int distance;
public Line(int source, int target, int distance)
{
this.source = source;
this.target = target;
this.distance = distance;
}
}
核心思路:
- 创建邻接表
List<Line> [] graph
,来储存边信息。graph[i]
代表与节点i
相邻的所有边。(注意,这是个无向图,应该双向赋值) - 根据题目需求,创建辅助结构。包括
check
数组:记录某个节点是否被收录;lineCount
,统计目前被收录的边数量;resultNum
记录收录边之和。 - 随机选择一个节点收录,并作初始化(通常情况取第一个节点做起始节点,
check[i] = 1
)。 - 进入Prim算法核心逻辑,遍历已收录节点的所有邻边,找到一个满足距离最小,而且边的目标节点未被收录这两个条件的边。将这条边和边连接的节点收录进来。循环这步操作,直到收录的边数
lineCount
比节点数N
小一。 - 如果循环中没有找到合适的边,说明存在孤儿节点(或局部图), 那就可以肯定无法生成最小生成树了。
实现代码:
public class MinTree
{
private static final int MAX = 0x3f3f3f3f;
class Line
{
int source;
int target;
int distance;
public Line(int source, int target,