PTA 公路村村通(Prim & Kruskal)

博客详细介绍了如何使用Prim和Kruskal算法解决最小生成树问题,以确保村落间公路的最低成本连接。Prim算法适用于邻接表,而Kruskal算法在边较少时更有效。两种算法的时间和空间复杂度也在文中进行了分析。
摘要由CSDN通过智能技术生成

题目描述

现有村落间道路的统计数据表中,列出了有可能建设成标准公路的若干条道路的成本,求使每个村落都有公路连通所需要的最低成本。

输入格式:

输入数据包括城镇数目正整数 N ( ≤ 1000 ) N(≤1000) N1000和候选道路数目 M ( ≤ 3 N ) M(≤3N) M3N
随后的 M M M行对应 M M M条道路,每行给出 3 个正整数,分别是该条道路直接连通的两个城镇的编号以及该道路改建的预算成本。为简单起见,城镇从 1 1 1 N N N 编号。

输出格式:

输出村村通需要的最低成本。如果输入数据不足以保证畅通,则输出 −1 ,表示需要建设更多公路。

输入样例:
6 15
1 2 5
1 3 3
1 4 7
1 5 4
1 6 2
2 3 4
2 4 6
2 5 2
2 6 6
3 4 6
3 5 1
3 6 1
4 5 10
4 6 8
5 6 3

输出样例:
12

题解一

很直白的最小生成树问题,要求输出边的和。使用Prim算法解决。

分析题意, N ( N ≤ 1000 ) N(N ≤ 1000) NN1000个节点,最多有 3 N 3N 3N 条边,应该是个稀疏图,所以使用邻接表来保存图。

所以还需要建一个边的封装类:

class Line
{
   
	int source;
	int target;
	int distance;

	public Line(int source, int target, int distance)
	{
   
		this.source = source;
		this.target = target;
		this.distance = distance;
	}
}

核心思路:

  1. 创建邻接表List<Line> [] graph,来储存边信息。graph[i]代表与节点 i 相邻的所有边。(注意,这是个无向图,应该双向赋值)
  2. 根据题目需求,创建辅助结构。包括check数组:记录某个节点是否被收录;lineCount,统计目前被收录的边数量;resultNum记录收录边之和。
  3. 随机选择一个节点收录,并作初始化(通常情况取第一个节点做起始节点,check[i] = 1)。
  4. 进入Prim算法核心逻辑,遍历已收录节点的所有邻边,找到一个满足距离最小,而且边的目标节点未被收录这两个条件的边。将这条边和边连接的节点收录进来。循环这步操作,直到收录的边数lineCount比节点数 N 小一。
  5. 如果循环中没有找到合适的边,说明存在孤儿节点(或局部图), 那就可以肯定无法生成最小生成树了。

实现代码:

public class MinTree
{
   
	private static final int MAX = 0x3f3f3f3f;

	class Line
	{
   
		int source;
		int target;
		int distance;

		public Line(int source, int target, 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值